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Abstract

Making the science and technology 
of  computer music comprehensible 
to musicians and composers who had 
little or no background therein was 
a part of  Max Mathews’ genius. In 
this presentation I will show how a 
simple diagram led to the essential 
understanding of  Claude Shannon’s 
sampling theorem, which in turn 
opened up a conceptual path to 
composing music for loudspeakers 
that had nothing to do with wires, 
cables and electronic devices, but 
led to learning how to program a 
computer—to write code. The change 
from device-determined output (analog) 
to program-determined output (digital) 
was a major change in paradigm that 
led to my realization of  an integral 
sound spatialization system that would 
have been impossible for me to achieve 

in any other medium. Along the way, 
the discovery of  FM Synthesis provided 
a means of  creating diverse spectra 
that, coupled with a ratio from Euclid’s 
Elements, produced an unusual and 
productive connection between spectral 
space and pitch space.  

1. Introduction

Claude Shannon’s 1948 paper, A 
Mathematical Theory of  Communication 
[1] is the hard-edged theory that underlies 
the flow of  information in today’s 
complex digital world of  computers, large 
and small, tablets, mobile phones, pads 
and pods—capable of  ‘sensing’ sound, 
image, touch, location—all complex 
machines, the complete understanding of  
which is beyond the capacity to know of  
any single human being. It is a summation 
of  Shannon’s own work and that of  his 
colleagues and predecessors.  The timing 
was propitious as the first stored-program 
computers were just being developed. The 
paper includes the first use of  the word 
‘bits’.1 And theorem 13, the sampling 
theorem, is critical to the connection 
between continuous and discrete signals. 
In his article, The Origins of  the 
Sampling Theorem, H.D. Luke traces a 
rich history of  the sampling theorem that 
extends back to 1848 [2].  

Shannon’s paper is the first reference 
in Max Mathews’ famous 1963 article 
The Digital Computer as a Musical 

Instrument [3], because the sampling 
theorem is the foundation on which 
Mathews based much of  his early work. 
His research included speech, hearing and 
computer music where the loudspeaker 
is the ultimate sound source.  Mathew’s 
diagrammatic representation of  the 
sampling theorem opened the door to 
my understanding of  what was otherwise 
incomprehensible because of  my own 
non-scientific background. 

Euclid’s line, to which I refer in the title, is 
its division into extreme and mean ratios, 
now commonly known as the golden 
ratio.  This ratio became of  interest to me 
after composing Turenas (1972), in which I 
made extensive use of  both harmonic and 
inharmonic spectra. I looked for other 
irrational numbers to produce inharmonic 
spectra and found that the Golden ratio 
had particularly interesting properties in 
this application.

2. Mathews’ diagram

My interest in composing music for 
loudspeakers stemmed from a few musical 
experiences that had a profound effect on 
the way I thought about composing. From 
1959 until 1962 I studied in Paris where 
contemporary music was notably present. 
Some concerts included electroacoustic 
music— the Domaine Musicale concerts 
at the Théâtre de l’Odéon and the 
Groupe de recherches musicales (GRM) 
presented concerts at the French Radio 

that were exclusively electroacoustic. 
Some of  the music, composed for four 
channels was, quite literally, head turning.  
From my youth I had a fascination with 
cavernous spaces and echoes, their 
disorienting effect on otherwise familiar 
sounds and the spatial aspect of  this 
music provoked a desire to compose for 
loudspeakers—to put imagined sounds in 
imagined spaces.  

Figure 1. This is Mathews’ schematic diagram 
of  the sampling process from 1963 [3], at which 
time electro-acoustic music was exclusively in the 
analog domain. 

However, I was well aware that the 
stringent technical requirements, 
knowledge and means to create music 
for loudspeakers in the 1960s were 
inaccessible to all but a few composers.

In 1964, because of  a bit of  serendipity, I 
was given Mathew’s article. It was the first 
diagram, which caught my attention (see 
Figure 1). It presented a comprehensible 
face of  the sampling theorem that, for 
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me and perhaps others, was suggestive 
and inspiring. It carved out a path to 
electroacoustic music that bypassed (what 
for me was) technological clutter; a path 
that would allow the composition of  ‘any 
perceivable sound’ [3] bringing musical 
creation to the edge of  my imagination.

2.1 Sampling’s Simplicity

Immediately striking in the diagram is 
that there are but three devices and a 
computer, none of  which have changed 
over time in their functional relationship, 
but all of  which have changed over time 
in their cost, quality and precision—for 
the better! 

Now, dear reader, imagine a 29 year 
old graduate student composer, fifteen 
years from his last math class, never 
having seen a computer, but with 
vivid imaginings, however vague and 
inchoate, of  composing music in 
space. Imagine further, the conceptual 
breakthrough when with images in mind 
of  electroacoustic music studios—filled 
with electronic equipment, cables, 
wires, multiple microphones, spinning 
loudspeakers and austere-looking 
engineers in white coats—I understood 
the implications of  Mathew’s Figure 1.  

2.2 The Soft Complexity Behind the 
Samples

Already familiar with complex symbols 
as representation of  sound, musicians 

seemed to be undaunted by learning to 
program a computer to do the same.  
Having read Mathew’s article early in 
1964 and the comprehensive article by 
James Tenney, Sound Generation by 
Means of  a Digital Computer [4], in 
April, I took a new course offered at 
Stanford University called, Computer 
Programming for Non-Engineers.   With 
the confidence that I could program a 
computer, I set about to learn acoustics 
and psychoacoustics, the latter highlighted 
in Mathew’s article as an area of  special 
importance to music perception. 

Tutored by the undergraduate math 
major, tuba player, and incipient hacker, 
David Poole (my angel!), by September 
1964 (just 50 years ago!) we had generated 
our first sounds using Mathew’s Music IV 
program.2   

The Artificial Intelligence Laboratory 
provided me off-hour computer time and 
a population of  skilled researchers in fields 
ranging from linguistics to philosophy, 
speech, physics and, of  course, computer 
science and electrical engineering - any 
one of  whom could answer the many 
questions that I posed as I developed 
a sound spatialization program. After 
cajoling an electrical engineering student 
to build me a 4-channel DAC, I realized a 
quad system in 1968 (Figure 2). 

Figure 2. Finding a graphic solution: the distance, 
azimuth and velocity cues of  a moving sound are 
captured by plotting points along the trajectory at 
a constant interval of  time. Doppler shift is derived 
from the radial velocity. I used the Cartesian 
quadrants for naming the channels. 

Completing the quad spatial system was 
a very important moment in my personal 
history, and in the direction that the 
Computer Music Project—and eventually 
CCRMA—would take. There are several 
reasons for this:

• While computers were not yet powerful 
enough to synthesize and process sound 
in real-time—hands-on and favoring 
immediate response—they would be some 
day (as we know very well with today’s 
technology).  

• Computer synthesis provided the 
composer direct control of  the material 
of  music, as a painter has with paint and 
canvas, allowing the accomplishment of  

two very different but complementary 
processes — joining the structure of  the 
sound itself  to the structure of  musical 
form.

• I realized that those having motivation 
and perseverance, but no special 
competence in building electronic devices, 
were presented with a means to engage 
in a medium, and at a high level of  
abstraction, that was a defining musical 
advance in the 20th century—music 
composed for loudspeakers.

The discovery of  FM Synthesis in 1967 
was the result of  searching for lively 
sounds that had some internal dynamism 
that made them easy to localize. Armed 
with insights3 derived from Jean-Claude 
Risset’s analysis-synthesis of  trumpet 
tones, [5] I spend the next few years 
developing FM synthesis. 

After seven years of  development and 
study, I had acquired sufficient knowledge 
to build sophisticated enough tools to 
be able to realize two compositions— 
Sabelithe (1971) and Turenas (1972).  
An extensive account of  this early work, 
Turenas: The Realization of  a Dream, was 
presented at the Journées d’Informatique 
Musicale in 2011 [6].

3. Euclid’s Line

Euclid defines what is now known as 
the Golden ratio in Elements, Book VI, 
Definition 3 [8]. It reads:
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A straight line is said to have been cut 
in extreme and mean ratio when, as the 
whole line is to the greater segment, so 
is the greater to the less. 

                   AB : AC = AC : CB           (1)

or                j =
1+ 5

2
j =1.618033...

                  (2)

The ratio in its algebraic form (equation 
2) is one of  the most studied of  numbers, 
with many claims being made over 
the centuries as regards its presence in 
nature, art and music (many are probably 
extravagant claims). The ratio is implicit 
in the formation of  the pentagram and 
perhaps known to the Pythagoreans 
almost three centuries earlier. However, 
my interest in this ratio came from 
another point of  view.

3.1 The Golden ratio and FM Spectra 

In FM synthesis the distribution of  
the spectral (side-band) components 
are determined by the relationship 
between the carrier and the modulating 
frequencies. For inharmonic spectra in 
Turenas, I used a carrier-to-modulating 
frequency ratio of  1:√2.  Looking for 
other irrational numbers that satisfied the 
constraint that their fractional part not 
be small (as is, for example, π) I explored 
the sound and attributes of  the golden 

ratio. When the carrier and modulating 
frequencies are both different powers of  
φ, four of  the resulting partials are also 
powers of  φ (see Table 1).  

Table 1. Shaded cells show the four low-order 
partial frequencies that are powers of  φ when both 
the carrier and modulating frequencies are powers 
of  φ (but not equal). 

This unique attribute caught my 
attention, as this is not the case with √2 
or any other irrational number that I am 
aware of.  

3.2 The Golden ratio and the Pitch 
Space

I then ‘discovered’4 that powers of  φ were 
related in the same way as Fibonacci 
numbers, as seen in Equation 3.

         

j n+1 =j n + j n-1

n=1, 2,3...
                     (3)

Expanding out powers of  φ in log 
frequency results in an equal intervallic 
division of  pitch, as is the case with 
powers of  2. I have referred to the interval 
based on this division as a pseudo-octave 

[7], with an equal tempered division of  
the pseudo-octave into nine scale steps. I 
call this the ‘Stria scale’ (StrScl), after the 
composition in which it was first used.   

In three of  my compositions I exploited 
this division of  the pitch space and the 
complementary inharmonic spectra based 
on the φ and FM synthesis (φFM) shown 
in Table 1. 

• Stria (1977) used φFM spectra [9]

• Phoné (1981) used harmonic spectra of       
synthesized singing voice mixed w/φFM     
spectra and synthesized singing voice.  

• Voices (2005, v.3 2011) used harmonic 
spectra of  soprano’s voice mixed with 
φFM spectra and synthesized singing 
voice.

Together with a longstanding interest in 
aspects of  Greek mythology and history, 
especially the Pythia and her origins, the 
golden ratio and the Oracle of  Delphi 
came together in Voices for soprano and 
interactive computer.  Along the way, I 
became fascinated with the singing voice. 

3.3 The Singing Voice: Phoné and 
Voices

In 1978 Jean-Claude Risset invited me 
to spend a year at IRCAM. Based on 
Michael McNabb’s demonstration that 
capturing the fundamental frequency 
(phonation frequency) of  a sung female 
vowel tone through time is to capture 
the signature of  the singing voice, even 

if  it is a sine wave (this is demonstrated 
in his work Dreamsong, 1978), I set about 
to synthesize the singing voice with FM 
synthesis. Taking advantage of  McNabb’s 
important insight and Johan Sundberg’s 
vast knowledge of  the science of  the 
singing voice, I profited greatly from his 
presence at IRCAM and was able to 
synthesize a number of  sung vowel tones.  

By setting the modulation frequency at the 
phonation frequency (pitch frequency), 
and the carrier frequencies at the closest 
harmonics to a given vowel’s formant 
frequencies, I successfully modeled the 
target spectrum, as shown in Figure 3. The 
relationship of  the spectral model to the 
signal generation can be seen in Equation 
4. With an appropriate mix of  a piecewise 
linear random function, and a periodic 
sinusoidal function to approximate the 
micro-modulation of  pitch (phonation 
frequency) through time, the simulations 
were convincing. This work is described in 
my paper, Synthesis of  the Singing Voice 
by Means of  Frequency Modulation [10].

        )2sin2sin( 111 tfItfA=e mc pp +          (4)

         )2sin2sin( 222 tfItfA mc pp ++
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Figure 3. Spectral modeling of  the singing voice 
(or any sound having prominent resonances) can 
be realized by setting the carrier frequencies, 
fc1 and fc2 at the harmonic frequencies, 2f  and 
7f, closest to the resonance peaks.  The target 
spectrum in red, was captured by sndpeek.  Band-
widths of  the resonances (blue curved lines) are 
determined by the indices I1 and I2, here ≈ 1.0.

One might ask: why synthesize a singing 
voice when one can sample and then 
process a real voice? One answer lies 
in the kind of  control one has over the 
details of  the sound material. With 
synthesis, sound can be formed in ways 
that are not possible in transformations of  
sampled sounds.  

John Pierce’s Eight-tone Canon (1966) [11] 
could only have been realized by synthesis 
because the timbres are composed of  
precisely arranged partials that are 

ordered but not in the harmonic series.  
So, too, in Jean-Claude Risset’s Mutations 
(1969), where  a set of  pitches is heard, 
first as melody, then as harmony, and 
finally folded into timbre [7]. It is the 
last stage which, again, is composed of  
precisely tuned partials from the set of  
pitches. It gives it an inharmonic, gong-
like sound an ineffable quality of  sounding 
‘imprinted’ pitches.

It was Mutations that inspired me to extend 
Risset’s powerful idea to another level of  
control based on my research with the 
singing voice and perceptual fusion [12]. 
Phoné was premiered at IRCAM in 1981.

Over several years I developed the SAIL5  
code around the idea of  continuous 
transformations of  sounds through 
detailed control of  the partials and the 
conditions in which they cohere, or 
fuse, to be perceived as a single source 
rather than individual partials. As noted 
above, Risset demonstrated in Mutations 
that sinusoids that begin together with 
amplitude envelopes that are exponential 
in shape, and then fall off in duration 
with increased pitch height, sound ‘gong’ 
or ‘bell’-like, yet they are  imbued with 
harmony.  The onset of  such a tone is 
shown in Figure 4.  

Extending this process to another level 
of  complexity in Phoné, each of  these 
sinusoids is the fc1 of  a two carrier FM 
process as shown in Equation 4.  The 
amplitude envelopes A1 do not decay to 

0. Rather, they rise and are joined by the 
other three components of  the Equation 
4, A2, I1 and I2, as the micro-modulation 
is faded into the mix—a smooth 
transformation to multiple singing voices.

Figure 4. A collection sinusoids with frequencies 
from the pitch space sound like a bell at the 
onset.  Continuing, they each become a harmonic 
in singing voice tones, where the change in hue 
represents the additional harmonics.

Voices makes use of  synthesized sounds 
only and the amplified and processed 
sound of  a soprano. The sounds and 
pitches are based upon φFM spectra and 
the StrScl (and its pseudo-octave). The 
question at the outset was whether or not 
a well-trained singer could comfortably 
sing in an unfamiliar spectral complex 
and in an artificial tuning system?  [7]

(Details of  how the piece was composed 
have been previously described [7].)  

Figure 4. 
Figure 5.1 

Figure 5.2 

\

Figure 5.3

Figure 5.4

The answer seems to be yes and I have 
found independent confirming evidence as 
to why this may be so. 
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4. Partials and Tuning

Hiding (from me, at least) in the ever 
increasing corpus in the hearing 
sciences, is a demonstration CD that is 
an astonishing and relevant example 
that shows the importance of  the 
complementary relationship between 
spectral space and pitch space. It is 
astonishing partly because the example 
is not cast in the context of  new music, 
where it is often difficult to make critical, 
objective judgments because both material 
and context are unfamiliar. This example 
is a synthesized Bach chorale [13] without 
artifice, where the tones are composed of  
partials produced by individual oscillators, 
the amplitudes of  which are similar to 
those of  a sawtooth wave. However, it is 
not a sawtooth wave and could not be!

The chorale is presented four times 
where each iteration sounds a different 
relationship of  tones and tuning. The 
spectral/tuning renderings of  the chorale 
are represented in Figure5.1-4 by a tone 
having a pitch frequency of  110Hz, where 
the red colored equation and division 
along the x axis stand for the pitch space 
scale and the gray equation and grey 
partial components their frequency 
relation to the pitch space. 

• In Figure 5.1 the base of  both equations 
is 2.0. 

• In Figure 5.2 the base of  the pitch 
equation is increased by 10% to 2.1.

• In Figure 5.3 the base of  the spectral 
equation is increased by 10% to 2.1.

• In Figure 5.4 the base of  both in 
increased  by 10%

The 1st corresponding sound example 
sounds as expected - simple and boring.  
The 2nd and 3rd sound examples sound 
out-of-tune - again, as expected. But the 
4th example, where both tuning and 
partials are stretched was not as expected. 
I had expected it to sound out-of  tune, but 
in a different way than the previous two. 
In, fact it sounded good, surprisingly— 
more interesting that the 1st sound 
example! 

When I formed the theoretical 
underpinnings for Stria and began the 
time-consuming sound realization, I had 
wondered if  its lissome sound surface 
was unique because of  its φFM spectra.  
And so with Phoné. Engaing a soprano 
in Voices was a special challenge, because 
I was unsure how the digital precision 
of  synthesis would interact with the 
suppleness of  a real singing voice. But 
again, the piece is built on the same 
‘plinth’ as Stria and Phoné. Finding the 
Tones and Tuning with Stretched Partials 
[13] example pointed toward, and gave 
weight to, a generalization: building sound 
structures where pitch space and spectral 
space are complementary may open to an 
entirely new soundscape.  

John Chowning

5. Conclusions

Understanding the implications of  
Mathews’ diagram freed musical ideas 
that led me into a field of  study, research 
and creation that I could not have 
anticipated. The golden ratio fell into 
my ‘ear lap’ simply because it was ‘in the 
air’— in the culture of  the 1970s with 
M.C. Escher t-shirts, computer graphics, 
and D. Hofstadter’s Gödel, Escher, Bach: An 
Eternal Golden Braid.

Much of  my inspiration is close to the bits 
and bytes of  sound, the spectral-temporal 
detail. But also to the programming 
language itself, abstract and cool in its 
generality, but often provocative and 
animating when engaged.  

6. Notes

1. ‘If  the base 2 is used the resulting units 
may be called binary digits, or more 
briefly bits, a word suggested by J. W. 
Tukey’ [1].

2. The program was run on an IBM 7094, 
a 1301 disk drive, which was shared with 
a Digital Equipment Co.  PDP-1, whose 
graphics display’s x, y ladders provided 
DACs.

3. Joined by Leland Smith, then in 1968 
by J. “Andy” Moorer and then later by 
John Grey and Loren Rush, the research 
at the Computer Music Project flourished.  
The Center for Computer Research in 
Music and Acoustics (CCRMA) was 

founded in 1974.

4. This was a ‘discovery’ in that in 1974, 
I knew that the ratio between consecutive 
numbers of  the Fibonacci sequence 
were an approximation of  φ, but I had 
no knowledge of  the same relationship 
between the pow-ers of  φ.

5. Stanford Artificial Intelligence 
Language is a procedural language 
developed at Stanford in the 1960s-70s.  
The Phoné code was derived from the 
Stria code in the same language.
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