
3 4

ICMC 2003 Keynote Address
Computer Music as a Research

Community
Roger B. Dannenberg

Introduction

I am honored to be invited to give this
address. I have been involved in com-
puter music for over 20 years now, and
although I have had many excursions
into other fields, I feel most at home
working on computer music technology
and creating music with computers. The
International Computer Music Confer-
ences (ICMC) and the International
Computer Music Association (ICMA)
have therefore been very important to
my career and my sense of direction.
The most important part of these or-
ganizations is the people involved, and
I would like to talk about these people,
about us, as a community. This docu-
ment is not a literal transcript of my key-
note address, but rather an approximate
recreation. I welcome any comments
you may have.

I really want to address two topics. The
first is about the nature of our commu-
nity, how it functions, and what it might
be doing differently. My thesis is that the

Internet can make a big difference in the
way a small global community operates, so
we should think about the implications of
new technology, not just for computer mu-
sic but for the computer music community.
If the first topic is about how we might do
things, the second topic is what we might
be doing. I will describe a personal selec-
tion of favorite research challenges that I
hope to be working on for the next decade,
and perhaps I can interest some others in
joining me.

Before jumping into these topics, I thought
it might be appropriate to talk a bit about
"the good old days" of computer music,
how I got started, and how things have
changed in the last couple of decades.

Computer Music Then and Now

I started studying computer music in the
late seventies, mainly by reading everything
I could get my hands on. The first ICMC
I attended was in 1983, twenty years ago,
at the Eastman School of Music. One of
the talks was about ultrasonic sensors for
conducting, and my immediate impres-
sion was that it would make more sense
to follow human musicians than conduc-
tors. (At least in my experience playing in
orchestras, that's what I learned to do!) So I
set about creating what I called "computer
accompaniment." To test and demonstrate
my ideas, I designed and built a small
computer that included hardware support

for pitch tracking and sound synthesis (see
Figure 1). This work was presented at the
1984 ICMC in Paris. In the figure, you
can see the luggage handle I attached to
the box to make it easier to carry, and the
whole system was designed to fit under an
airplane seat to avoid damage.

.

Figure 1. A small computer built by the author to de-
velop his first computer accompaniment system.

This illustrates what research was like then.
There was a lot of focus on hardware be-
cause computers were just too slow to do
many of the things we wanted to do. By
1980, there were a number of synthesis
languages running on mainframe and
minicomputers, but microprocessors were
the new thing, and the area of real-time
synthesis and control was full of possi-
bilities. Computers and software were rela-
tively simple, making it possible to build or
modify systems without a large investment
of time and money. Hardware promised to
make things fast enough for real-time syn-
thesis, so a lot of effort went into creating

systems and not so much work went into
exploring what these systems could actu-
ally do.

Hardware versus Software

Most hardware design efforts by research-
ers were not great successes. Figure 2 il-
lustrates why. Suppose you started building
hardware that you expected to be 10 times
faster than a software approach. (Theo-
retically, hardware could give much better
than a factor of ten speedup, but in reality,
we are matching state-of-the-art processors
against home-brew hardware.) Whatever
the speedup of the hardware, notice that
the software approach is going to get ex-
ponentially faster over time due to Moore's
law: processors are going to double in
power every 18 months. So by the time the
hardware is designed, built, debugged, and
supported by a suite of software, it is lucky
to have a useful life of a year or two before
it gets overtaken by software running on
the latest, greatest microprocessor.

Figure 2. Software always overtakes hardware at an
exponential rate.

array summer 2004Roger B. Dannenberg

5 6

Tools in the Early Days

Unlike today, when there are so many
computer music products on the market,
experimenters in the early 80's had to ei-
ther build their own systems or adopt one
of the few systems that worked. As a result,
there was a lot of do-it-yourself work, in-
cluding drivers, interfaces, and synthesiz-
ers. People tended to gather around and
support systems that worked, because there
were relatively few choices. Also, there was
a small separation between tool builders
and tool users. If you wanted the tools, you
pretty much had to be proficient in build-
ing or maintaining them. On the other
hand, systems were much simpler than
typical computer systems today. One could
build hardware at the gate level, interface
it to a computer, and write instructions
that would directly read or write to the
hardware. Today, there are many layers of
abstraction in both hardware and software,
so building or customizing systems is much
more difficult.

Tools Today

Of course, a lot of the work we did twenty
years ago is no longer necessary. Every
personal computer has audio I/O built-
in, complete with software. The speed
at which computers are progressing has
led to rapid software evolution, and there
are many different interfaces support-
ing sound on computers. For example,
WinMM, DirectX (versions 1 through 9),

and ASIO all provide software support
for sound I/O under Windows. Instead
of too few things that work, we are cursed
with too many choices. Another change is
that today's computers are generally less
suitable for real-time control. Even though
they are much faster, the layers of software
and hardware abstraction create a lot of
overhead. The 4 MHz microprocessor in
Figure 1 handled interrupts faster than
modern programs running at clock rates a
thousand times faster. Of course, the mod-
ern program is protected and scheduled
by an operating system, so it may take a
thousand times more work to transfer in-
put data to the program, but that's exactly
my point. Earlier computers were simpler
in many ways.

Commercial vs. Research Systems

One thing that has remained true is
that computer systems become obsolete
quickly as newer, faster systems replace
them. However, since today's systems are
so much more complicated, it is especially
hard to keep up-to-date. This is not such
a problem for commercial systems, where
upgrade costs are amortized over many
customers, but for researchers and spe-
cial-purpose systems, system complexity
often kills off new developments. For that
reason, we are more dependent on com-
mercial systems such as audio interfaces,
synthesizers, and even the software that
drives them. This puts more separation be-

tween the tool builders and the tool users
than in the past.

Commercial systems are a mixed blessing.
We benefit from commodity products like
fast processor chips, CD recorders, digital
audio interfaces, and laptop computers.
The music industry also builds synthesiz-
ers, controllers, and software that are in-
valuable for research. On the other hand,
we suffer from poor design and rapid
turnover. Commercial systems make many
assumptions that are simply wrong for our
admittedly small community of research-
ers. (Note that by "researchers" I include
scientists, engineers, and composers.) Due
to these assumptions,

• most off-the-shelf systems do not
support interaction and live perfor-
mance,

• we are often limited by conventional
media formats, e.g. DAT recorders
and CD's are limited to two chan-
nels,

• systems change rapidly on the as-
sumptions that users have not built
their own extensions and modifica-
tions, so replacement is simple,

• making software obsolete is good for
the industry--it reduces maintenance
costs and increases sales.

The Computer Music Community

In my opinion, the community of com-
puter music researchers suffers more than
necessary. We tend to build tools for per-
sonal use or for a very narrow distribution
when we have to, and otherwise rely on the
mass market to generate products that we
can use. Between these two extremes of
personal and mass market development, I
believe we should spend more effort at the
level of the community, pooling our lim-
ited resources to everyone's benefit.

One would expect that in an active com-
munity like ours, there would be some
well-developed resources, including:

• standard portable libraries for audio
I/O, MIDI I/O, sound file I/O, unit
generators and common DSP func-
tions, and digital audio compression,

• editors for audio, events, and music
notation, allowing annotation, dis-
play, visualization, and composition,

• collaboration on network-based mu-
sic performance, including theory,
practice, tools, servers, and codecs,

• benchmarks and datasets for
analysis/synthesis, DSP performance,
pitch estimation, music transcription,
and other tasks,

• curriculum design: what are the core
concepts to understand, and what

array Roger B. Dannenberg summer 2004ICMC Keynote Address

7 8

 are the great works everyone should
hear?

What can we do to achieve these and other
goals? I believe that people generally make
rational decisions, so it must be that there
is simply not enough reward to justify com-
munity-oriented effort. However, we need
to realize that this is our community. Collec-
tively, we establish the norms and in many
ways the reward system. We teach those
that follow us, we review proposals and
papers, and publish a large fraction of our
own work through the ICMC proceedings.
Our members are on editorial boards of
most of the publishers that are important
to us. I think we can change things if we
want to, and this might be a very rational
decision.

The Internet

How can we change things? One strategy
that seems obvious is to leverage the Inter-
net as a repository of the shared commu-
nity. Email and web sites offer 24-by-7 ac-
cess to information across the globe. Open
source software is a good model of com-
munity cooperation. Facilities like Source-
Forge and CVS support global software
development teams quite effectively, en-
abling cooperation that never would have
worked in the past.

The Internet has already defined the way
many of us conduct our research. I have

trouble getting students to visit the library,
which means anything not on the Internet
is effectively lost to collective thought. Vir-
tual documents are defining our collective
knowledge more than physical books and
journals. All researchers will change the
way they work to take advantage of com-
munication and information available elec-
tronically. I would like to see a community
like ours set an example for other fields.

Organization

Simply working with the Internet will not
guarantee results. I believe some orga-
nization is required; good work does not
simply appear without high-level planning
and design. One could argue that the free
software movement is a counterexample,
where there is no top-level organization
and good systems evolve in a bottom-up
process. The problem I see is that, often,
free software is actually not well designed
and lacks input from the experts who might
improve matters. Free software often works
best when recreating the functionality of
an existing software product, eliminating
some of the need for top-down design, but
reducing the degree of innovation.

Initiative

To overcome the limitations of free soft-
ware development paradigms, contribu-
tions from experts are essential. Academics
have a tendency to write about the flaws

in the current practice and to propose im-
provements. This is different from actually
making the improvements and changing
the current practice, as this would be "non
academic" work. I think when we talk
about building a community and support-
ing the community practice with tools and
resources, it is necessary for the experts to
be involved, to take the initiative to make
things better.

Examples

All this is easy to write about, but much
harder to turn into practice. Perhaps these
ideas are naive, and certainly changing a
culture is not easy. At least it is a useful
exercise to create a vision of how things
might be. Creating and sharing a vision
seems to be necessary for change, if not
sufficient. On the positive side, I think
many of us already share this vision and
many have made progress. There are
many good examples of software created
with the needs of our community in mind,
and I will mention some of them here:

• PortMusic: PortAudio, and PortMidi
are APIs implementing cross-plat-
form access to audio and MIDI I/O.
Think of these as a "stdio" library for
music. (For non-C-programmers, "st-
dio" allows C programs to read and
write files; where would C be without
it?)

• Audacity is a cross-platform, free

software audio editor that is especially
good at handling large files.

• Synthesis systems, including Su-
perCollider, csound, Nyquist, jMax,
JSyn, and STK are perfect examples
of well-designed and supported sys-
tems created especially for our com-
munity.

• Open Sound Control (OSC) offers
real-time, cross-platform, network-
based communication especially for
music applications.

• PlanetCCRMA, while not really a
software project, organizes knowledge
and software distributions to help the
computer music community use a
Linux optimized for music.

I am sure this list could be longer, but these
examples are sufficient to illustrate my
point, that this community is capable of
working together to improve our tools and
resources. While all of these projects offer
usable software now, most of them could
use more help to make them complete and
reliable.

As a community, one of the toughest prob-
lems is to collectively identify the small
number of projects we can support with
a critical mass of developers and users.
Again, the tendency for academics and
hackers alike is to make small improve-
ments or to focus on one narrow aspect
of a problem, then distribute a half-baked

array summer 2004ICMC Keynote Address Roger B. Dannenberg

9 10

"research system" with many rough edges.
As a result, we often find many programs
available, none of which actually work
well enough to be worth using. We need
to find a balance between innovation and
standardization.

Research Challenges

Building tools is great fun and a worthy oc-
cupation, but it is only part of the picture.
Most researchers are excited by the really
big questions that stimulate our curiosity
and imagination. I wish I could formulate
grand challenges for computer music the
way David Hilbert did for mathematics a
century ago, but frankly, it would be fool-
ish for most of us to invite any comparison
with Hilbert. Instead, I will offer a more
personal view. These are my challenges,
and I hope you will find them interesting.
You may even want to tackle them your-
self, and I would welcome anyone to do so,
independently or in collaboration.

Machine Identification of Musical
Structure

When we listen to most music, we hear
relationships and structure. For example,
we may recognize that a melodic phrase
is repeated. We can think of the two
phrases as related by a time difference. A
transposition occurs when there is a time
difference and a pitch difference. There
are many possible relationships within a

piece of music. Some are important and
intentional while others are random and
accidental. Recently, I have been working
on getting computers to find structure in
music, looking mainly for repetition, and
then building simple descriptions of the
implied structure.

Figure 3 shows some input and output of
this program. The audio is from the John
Coltrane Quartet playing Coltrane's com-
position "Naima" and was taken directly
from an audio CD. Below the audio you
can see a transcription of the saxophone
solo represented in piano roll notation.
(The middle part is a piano solo, and the
transcription did not recover much.) The
transcription is far from perfect, but not
bad considering that the source is poly-
phonic audio. The structural analysis
program looks for similarities within the
transcription. Just below the transcription,
there are colored bars representing the
final output. Bars with similar colors rep-
resent similar phrases. You can see that the
opening phrase is repeated immediately
(the first two red bars), and then there is
a shorter repeated phrase (the green bars),
and so on. "Naima" is a ballad in AABA
form. The "A" parts are the red bars, but
in this analysis the "B" part is subdivided
into three parts (green, green, magenta).
You can see from this analysis that Col-
trane opens by playing the AABA form
and closes with just BA. You can also see a
repeated 2-measure phrase at the end.

 bars).

Figure 3. Structural analysis of John Coltrane's
"Naima."

(As an aside, Figure 3 is a good example
of the kind of research-oriented software
tool I advocated in the previous section.
In addition to displays of audio, MIDI,
and label data, this editor can display
time-aligned graphics. I used this feature
to create the colored bars appearing below
the MIDI data. This facilitates music data
visualization and interaction that could
not be accomplished with any commercial
software).

My advisee, Ning Hu, and I have also
looked at spectral features as a way of de-
tecting music similarity, and in general, this
works better for polyphonic music. There
is much work to be done in this area. How
can we detect transposition and other
structural relationships? What kinds of
musical structure do people actually hear?
How do we decide which relationships are
significant and which are random? Can we
combine information at the symbolic level
with features from acoustic representa-
tions?

Phrase-Based Synthesis

The second problem I would like to discuss
is music synthesis, a topic that has been
central to this field from the beginning. It is
standard practice in science and engineer-
ing to subdivide big problems into smaller
problems that are easier to solve. In the
synthesis area, this led to a standard model
in which music is divided into notes which
are synthesized independently and then
combined to complete the synthesis pro-
cess. This divide-and-conquer approach
works well in science because most things
are independent enough to make progress
even when the assumptions are not entirely
true. If I drop a ball, the acceleration is
about 1G, and even though it depends on
such things as my blood pressure, whether
I'm wearing gloves, and the air tempera-
ture, I do not even know how one could
measure all these microscopic effects.

Music is different. The sound of one note
depends on the next, so we cannot simply
create notes in isolation and expect to com-
bine them to create music. Of course, this
independence assumption is fundamental
in Music N languages and MIDI, and the
assumption is truer of some instruments
(the piano) than others (the violin). Figure
4 illustrates the difference between tradi-
tional note-by-note synthesis and the con-
cept of phrase-based synthesis.

Roger B. Dannenbergarray summer 2004ICMC Keynote Address

11 12

Figure 4. Synthesizing a note-at-a-time fails to capture
important contextual information.

To illustrate the effect of phrase and
context, Figure 5 shows two amplitude
envelopes extracted from a trumpet per-
formance. Both notes have about the same
duration, dynamic level, and pitch, but the
left one is articulated using the tongue and
the right is slurred. The two shapes are
nothing alike. You might also notice the
quick release at the end of the tongued
note. This is characteristic, but only ap-
pears when the note is followed by another
tongued note. We have always known that
the independence assumption is wrong,
but we have not made much progress get-
ting rid of it.

In my work on Combined Spectral Inter-
polation Synthesis with Istvan Derenyi,
we treat trumpet synthesis as a two-step
process. First, a score containing phras-
ing information and other annotations is
translated to continuous amplitude and
frequency control functions. There are
no separate notes in this intermediate
representation, just continuous control
functions. In the second step, these control
functions drive a synthesis process that cre-
ates continuously evolving spectra that are
appropriate for the given amplitude and
frequency controls. It is interesting that we
start with distinct notes, move to an inter-
mediate representation where notes do not
exist, generate audio, and end up with the
perception of a sequence of notes.

Our work has only just begun, but I be-
lieve at least the concept that notes are
not separable can be applied to many
synthesis techniques, from spectral mod-
els to physical models, and even to sam-
plers and MIDI. In the case of trumpet
synthesis, I believe our sound examples

Figure 5. Amplitude envelopes of tongued and slurred

are quite convincing. By using the same
synthesis algorithms with note-by-note
synthesis and with phrase-based synthesis,
we can hear a dramatic difference. I hope
to extend our work to handle a greater
range of articulation, to extend the work
to other instruments, and to automate the
construction of instrument models using
machine learning techniques.

Combining Light and Sound

Musicians have been interested in the
combination of light and sound from an-
cient times. Recently, however, computers
have made it possible to synthesize images
at video rates using inexpensive, portable
equipment. The use of video projections
in concerts is becoming almost com-
monplace (see Figure 6), but there is still
much to be learned. I believe there is
room for exploration at many levels. At
the systems level, how do we organize
software and hardware to facilitate the
coordination of images and sound? At the
music theoretical level, how do we analyze
music that includes images, video, and/or
animation? How should composers think
about images and sound? From the level
of psychology, how do images affect our
perception of sound (and vice versa)? Of
course, composers are not the only ones
thinking along these lines, so there is also
a need for cross-disciplinary exchange of
ideas.

Figure 6. A performance of "Uncertainty Principle"
with the author and Eric Kloss, soloists. The image in
the background is a projected interactive computer ani-
mation that reacts to the soloists in real time.

These questions have no simple answers,
and this is a perfect example of why I think
of composing as research. Like scientifi c
research, we must begin by studying iso-
lated instances (i.e. composing pieces). As
we become familiar with more examples,
we develop taxonomies, identify concepts,
and form hypotheses. Eventually, our ex-
perience is organized into theories such as
harmonic theory (in music) or signal pro-
cessing (in engineering). Some might say
that we already have enough music prob-
lems to solve, but I think the potential to
link images to sounds in live performance
is especially important for computer mu-
sic and is therefore something particularly
interesting for our community to explore.

Roger B. Dannenbergarray summer 2004ICMC Keynote Address

13 14

Languages and Systems

To facilitate research in all these areas, we
need good tools and good ways to express
ourselves. Our community has developed
many interesting language concepts (see
Figure 7). Music N offers some unconven-
tional semantics that are both effective for
music and lacking in more conventional
programming languages. MAX-like lan-
guages have proven to be very effective for
visual programming of interactive systems.
Still, a number of problems remain in mu-
sic programming systems.

Figure 7. Concepts such as unit generators, patches,
instantiation, and scores have led to interesting special-
ized languages for computer music.

One observation is that all computer music
systems seem to have a "sound" of their
own. Every system makes certain things
easier than others, and this inevitably leads
composers, for better or worse, down cer-
tain paths and away from others. Most feel
that computer music systems should not
interfere with the goals of their users, and
so language designers must always strike
a balance between power and generality.
Power comes when you can produce a lot
of output or complexity with a minimum
of effort. Generality comes when you can
achieve exactly the output you want. In
contrast, many commercial programs take
the opposite approach. They provide strong
support for certain styles or techniques of
music generation, thereby offering creative
opportunities to less-technically inclined
musicians.

I believe we are just beginning to explore
interactive music systems, especially those
that deal with a mixture of audio, control,
and sensors. For example, composers are
now thinking about signal processing not
as an effect but as an integral aspect of
composition. While the focus used to be on
synthesis, now we see signal analysis as an
important component of interactive sys-
tems. Music theory, music structures, signal
processing, and sound synthesis are begin-
ning to merge in interesting ways. Progress
may depend upon systems that simplify
the interactive manipulation of signals.
Languages and systems can also support

new directions, including music perfor-
mances over networks and the incorpora-
tion of images and animation into music.
There are many challenges, and we need
to experiment with many new approaches
to better understand language and system
design for music.

Conclusions

Just as the explosion of computer technol-
ogy is surely a milestone in human civiliza-
tion, I believe computer music represents a
significant turning point in music history.
Instruments augmented the human voice
with new sounds and techniques, music
notation augmented human memory, and
now electronics and computers bring us
new ways to store, generate, and process
music. What could be more interesting
than to be in the middle of an artistic and
cultural revolution!

I hope I have motivated you to at least
think about ways we can work together to
make our work more productive and more
rewarding. I have also suggested some re-
search topics that I find most interesting,
and perhaps some will join me in their
exploration. Regardless of what the future
brings, these are interesting times, and we
should all be thankful that we can play a
small part in their unfolding.

References

Note: A paper like this touches on the work of hundreds
of authors and papers. I have elected to cite only the
specific work mentioned here, and I will ask the reader
to consult the references in these papers and web sites
for a broader coverage of these topics.

My work on computer accompaniment
was first presented at the 1984 ICMC,
although the publication date for those
proceedings is 1985: Dannenberg, "An
On-Line Algorithm for Real-Time
Accompaniment," in Proceedings of the 1984
ICMC, Computer Music Association, (June
1985), pp. 193-198. Some relatively early
discussion of software synthesis appeared
in Dannenberg and Mercer, "Real-
Time Software Synthesis on Superscalar
Architectures," in Proceedings of the 1992
ICMC, ICMA, (October 1992), pp. 174-
177. Work on music structure appeared
in Dannenberg, "Listening to 'Naima': An
Automated Structural Analysis of Music
from Recorded Audio," in Proceedings of the
2002 ICMC, ICMA, (2002), pp. 28-34, and
Dannenberg and Hu, "Pattern Discovery
Techniques for Music Audio," Journal of
New Music Research, 32(2), (June 2003),
pp. 153-164. Phrase-based synthesis, which
in our papers is called "Combined Spectral
Interpolation Synthesis," is described in
Derenyi and Dannenberg, "Synthesizing
Trumpet Performances," in Proceedings of
the ICMC, ICMA (1998), pp. 490-496, and
Dannenberg and Derenyi, ''Combining
Instrument and Performance Models for

Roger B. Dannenbergarray summer 2004ICMC Keynote Address

15 16

High-Quality Music Synthesis,'' Journal of
New Music Research, 27(3), (September
1998), pp. 211-238.

I have written about systems aspects of
working with animation and music in Dan-
nenberg, "Real Time Control For Interac-
tive Computer Music and Animation," in
Proceedings of The Arts and Technology II: A
Symposium, Connecticut College, (Febru-
ary 1989), pp. 85-94, and Dannenberg
and Rubine, "Toward Modular, Portable,
Real-Time Software," in Proceedings of the
1995 ICMC, ICMA, (September 1995),
pp. 65-72, and Fred Collopy has an inter-
esting web site devoted to this topic. In the
computer music languages and systems
area, see Dannenberg, "The Canon Score
Language," Computer Music Journal, 13(1),
(Spring 1989), pp. 47-56 for an introduc-
tion to the idea of scores as programs and
how temporal semantics can be added
to a programming language to create a
music language. This work was extended
in Nyquist as described in Dannenberg,
"Machine Tongues XIX: Nyquist, a Lan-
guage for Composition and Sound Syn-
thesis," Computer Music Journal, 21(3),
(Fall 1997), pp. 50-60. More recently, I
have turned to language support for real-
time systems, and some of the most recent
ideas are in Dannenberg, "A Language for
Interactive Audio Applications," in Proceed-
ings of the 2002 ICMC, ICMA, (2002), pp.
509-515.

 I gave some examples of what I consider
to be good examples of research-oriented
software tools. More information can be
found in Bencina and Burk, "PortAudio
-- an Open Source Cross Platform Au-
dio API," in Proceedings of the 2001 ICMC,
ICMA, (2001), the PortMusic web site,
Mazzoni and Dannenberg, "A Fast Data
Structure for Disk-Based Audio Editing,"
in Proceedings of the 2001 ICMC, ICMA,
(2001), pp. 107-110, James McCartney,
"Rethinking the Computer Music Lan-
guage: SuperCollider," Computer Music
Journal, 26(4), (Winter 2002), pp. 61-68,
the csounds.com web site, the Nyquist web
site, Déchelle, Borghesi, De Cecco, Maggi,
Rovan, and Schnell, "jMax: An Environ-
ment for Real Time Musical Applica-
tions," Computer Music Journal, 23(3), (Fall
1999), pp. 50-58, Burk, "JSyn -- A Real-
time Synthesis API for JAVA," in Proceedings
of the ICMC, ICMA (1998), Cook and Sca-
vone, "The Synthesis ToolKit (STK)," in
Proceedings of the 1999 ICMC, ICMA, (1999)
and the STK website, Wright and Freed
(1997), "Open Sound Control: A New Pro-
tocol for Communicating with Sound Syn-
thesizers," in Proceedings of the 1997 ICMC,
ICMA, pp. 101-104 and the OSC web site,
Lopez-Lezcano, "The Planet CCRMA
Software Collection," in Proceedings of the
2002 ICMC, ICMA, pp. 138-141 and the
PlanetCCRMA website.

Impressions of ICMC 2003
Yuan Peiying

As the final notes of Steve Everett’s
Gamelan Asmaranda lingered in
the air, signaling the end of the
International Music Conference 2003,
I was overwhelmed with a cascade
of thoughts. What came to mind
immediately was most definitely regret
and remorse that there would possibly
never be another chance to participate
in such a conference in Singapore
ever again. Thankfully, however, I had
managed to learn many things from the
conference and I am glad that I have
been given this invaluable learning
opportunity.

There were several memorable events
that had taken place throughout the
five eventful days of the conference.
When attending concerts, what amazed
me most was the realization that
computer music is actually a very ‘real’
form of music. The sounds, although
digitally enhanced and altered, are
most realistic and are a reflection of
the everyday sounds we come across.
There is no shortage of compositions by
various composers to prove this point.
Rikhardur H. Fridriksson’s Lidan II,

showcased during the last day’s evening
concert, is one example. The sounds
used had real-life origins, which were the
coughs and gasps produced by the human
vocal cords. Moreover, the piece was
inspired from and a direct consequence
of a period of bad health and respiratory
disorder of the composer himself, thus
highlighting the reality attached to the
sounds of computer music.

I sat on the bus the other day and was
perturbed by the screeching noises of
the brakes. I walked past a construction
site this afternoon and for the first time,
I wasn’t irritated by the blast of sounds.
Instead, my mind was imagining how I
would be able to use these sounds in my
compositions. These are but two examples
of how my participation in the conference
has broadened my perception of music
and triggered off much creativity and
imagination.

The range of compositions presented
was wide and a definite eye-opener.
Besides more ‘traditionally’ computer
music sounding works, like Apostolos
Loufopoulos’ Night Pulses, whose night
sounds were quite distinctly simulated
through computer mediums, there were
slightly more avant-garde sounding works,
as well as works that challenged the norm
and brought in other influences. Works
like Naotoshi Osaka’s Mirrors for hichiriki
(a traditional Japanese wind instrument),

array summer 2004ICMC Keynote Address

