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The present work aims to investigate the function describing the 
relationship between a quality criterion and input factors of the 
thermo-mechanical fusible /TMF/ interfacing process and to derive 
its effective approximation. An approximation by interpolation was 
applied for the purpose of the study. 
A numerical realization of a linear and exponential approximation of 
the mathematical model describing the TMF interfacing process 
was performed. An effective linear approximation of the function 
connecting the quality criterion with the input factors of the TMF 
interfacing process was found. This creates conditions for replacing 
the relatively complex function (describing the TMF interfacing 
process) with its linear approximation. The linear approximation 
gives the possibility easier and faster to determine the relationships 
between the input factors and the quality criterion. This created 
conditions for ignoring the subjective factor and for optimizing and 
automating the studied technological process. 
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1 Introduction 
Nowadays, the achievements of mathematics allow the application of mathematical modeling for various 
objects and processes. Mathematical modeling and optimization acquires special significance in the 
modern conditions of accelerated scientific and technical progress, in the need to achieve high efficiency 
with limited financial, material, labor, energy and time resources. 
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The mathematical methods for analysis, modeling and optimization are increasingly used in the sewing 
and textile technologies [1-4]. This allows avoiding the subjective factor and creates real conditions for 
automation of the processes. 

One of the effective methods for study a given function is the method of approximation [5-7].  

With this method the investigation of various (unknown or extremely complex) numerical characteristics 
and qualitative properties of the original objects reduces to working with other objects whose 
characteristics and properties are already known or more convenient to work with [5-7].  

After the analysis of the literature survey, it can be summarized that the methods of approximation are 
applied to a number of technological processes in the textile and clothing industry [8-12]. 

For example, [8] presents the mathematical and computer simulation of multiparameter systems. The 
simulation is based on experimental data and is achieved by modifying the one-dimensional 
approximations of splines. The method is used in the study of some technological conditions of fabric 
lamination systems and gives good results. 

In [9] mathematical and computer models are developed for predicting effective elastic properties for a 
complex periodic cell and a representative volume (fragment) of spatially amplified composite material 
(SRCM). Numerical experiments are performed to predict the effective elastic properties of a cell with 
SRCM periodicity with an orthogonal tissue pattern with two variants of the structure and the representative 
volume cell using the local approximation method. 

An approximation of a mathematical model of the thermo-mechanical fusing process is proposed in [13]. 

The thermo-mechanical fusing process is one of the main technological processes in the sewing 
production. The quality and productivity achieved in this process significantly affect the quality and 
productivity of the entire production in the sewing company. Therefore, it is important to investigate the 
thermo-mechanical fusing process, to create mathematical models describing the process [14,15], and to 
search for opportunities for their approximation [13]. 

In [13], an approximation of the function connecting an output criterion for performance with input factors 
of the thermo-mechanical fusing process is proposed. 

It is especially important to study and analyze an output quality criterion as well. Several studies [16,17,  
18] analyze the influence of input factors on various quality criteria of the thermo-mechanical fusing 
process. In [15] a function is derived connecting an output quality criterion with factors influencing the 
fusing conditions. 

Finding an approximation of this function [15] which describes the thermo-mechanical fusible /TMF/ 
interfacing process in a simpler way is of particular interest. 

This work aims to investigate the function describing the relationship between a quality criterion and input 
factors of the TMF interfacing process and to derive its effective approximation. 

2 Research work 
2.1 Methods 

The standard algorithm for approximating functions, described in detail in [5, 6, 7, 13], is used in the 
research. 
Taking into account the conditions for conducting the present studies, interpolation is used as a method of 
approximation [5, 6, 7].  
The main steps in applying the interpolation method are [5, 6, 7]: 
- let the function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) be defined in some interval and a table of its values be known for the 
respective 𝑥𝑥𝑖𝑖  [х, ш]; 

- an approximate function 𝜑𝜑(𝑥𝑥) is sought such that 



113 
 

𝜑𝜑(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 0,1, … ,𝑛𝑛.                                                                                                                             (1) 

This problem is solved by setting the class of functions 𝜑𝜑(𝑥𝑥). 

Graphically, condition (1) means that the approximating function 𝜑𝜑(𝑥𝑥) passes through the points (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 
since 𝑥𝑥𝑖𝑖 has the same values as 𝑓𝑓(𝑥𝑥) (Figure 1). 

 
Fig. 1 Indicative graphical representation of the condition (1). 

After performing the interpolation, it is necessary to determine the coefficient of determination 𝑅𝑅2 [6]. It 
measures how much of the approximation error is eliminated. The coefficient of determination is a 
measure of the quality of the approximation model and varies in the range [0;1], or in percentages [0; 
100]. The closer 𝑅𝑅2 is to 1 (up to 100%), the greater the efficiency of the approximation model. 
Specialized software Maple and Matвab is used for the research in the present work. 

2.2 Materials 
Materials produced by the company NITEX-50 - Sofia were used for basic textile materials /ТМ/. They 
are 100% wool fabrics. Their characteristics are described in detail in [14]. 

Material produced by the company Kufner-B121N77 was used for an auxiliary TM (interlining). Their 
characteristics are described in detail in [14] as well.  

2.3 Conditions for conducting the study 
For the numerical realization of the research the experimentally obtained function (2) is used [15]: 

3213221321 ..0175.0..04.0..0175.0.155.0.21.0.3225.0255.1 xxxxxxxxxxY +−−+++=                          (2) 

The function (2) describes the relationship between a quality criterion Y (The change of the color shade 
of the TM after TMF interfacing process) and manageable process factors Х1 – Pressure, P [N/cm2], Х2 - 
Temperature of the pressing plates, Т [°C] , Х3 - Mass per unit area of the basic textile materials, М 
[g/m2].   

The correlation field from the experimental data that are processed with the specialized software Maple 
and MatLab is used. 

The best approximation to the experimentally derived function (2) is sought. An approximation of function 
(2) is applied by interpolation in linear and exponential form. The investigations were performed with the 
coded values of the factors. The relationship between the natural and coded values of the factors is 
given in [14]. Three variants are investigated. In each variant, one of the factors assumes values in the 
range [-1; +1], and the other two factors are constants. The constant values are the values of the factors 
at which the function Y(X1, X2, X3) is optimal. 

The optimal value of the selected quality criterion Yopt = Ymin = 0.4975 is reached at the following values 
of the input factors: the pressure Р = 10 [N/cm2], the temperature of the pressing plates T = 120 [°C] and 
the mass per unit area of basic textile materials M = 173 [g/m2] [18].  The coded values of the factors in 
which Ymin is obtained are X1 = (-1); X2 = (-1); X3 = (-1) [18]. 
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A linear and exponential approximation of the function (2) is made for the following three variants: 

- variant I -  Х1 ∈ [−1; 1];  Х2 = (−1); Х3 = (−1); 

- variant II - Х2 ∈ [−1; 1]; Х1 = (−1); Х3 = (−1); 

- variant III - Х3 ∈ [−1; 1];  x1 = (−1); x2 = (−1). 

3 Results and discussion 
3.1 Results of the approximation 

The numerical results of the linear and exponential approximation of the function (2) for the first variant 
are given in Table 1. 

Table 1. Numerical results of the approximations of the function (2) for variant 1. 

𝐗𝐗𝟏𝟏 Linear Approximation  
𝐘𝐘 = 𝟎𝟎.𝟗𝟗𝟗𝟗 + 𝟎𝟎.𝟗𝟗𝟑𝟑𝟑𝟑𝟑𝟑𝐱𝐱𝟏𝟏 

Exponential 
Approximation 
𝐘𝐘 = 𝟎𝟎.𝟗𝟗𝟎𝟎𝟑𝟑𝟗𝟗𝐞𝐞𝟎𝟎.𝟗𝟗𝟑𝟑𝟑𝟑𝟑𝟑𝐱𝐱𝟏𝟏 

-1.00 0.607500 0.633481 
-0.75 0.688125 0.692739 
-0.50 0.768750 0.757542 
-0.25 0.849375 0.828406 
 0.00 0.930000 0.905900 
+0.25 1.010625 0.990643 
+0.50 1.091250 1.083313 
+0.75 1.171875 1.184652 
+1.00 1.252500 1.295470 

 

The graphical results of the linear and exponential approximation of the function (2) for the first variant 
are presented in figure 2. 

For 1st variant: the linear and exponential approximation coincide, i.e. 

YLinAppr = YExpAppr,                                                                                                                    (3) 

where: 

YLinAppr = Y = 0.93 + 0.3225x1                                                                                                   (4) 

YExpAppr = Y = 0.9059e0.3577x1,                                                                                                   (5) 

when: 

0.93 + 0.3225x1 = 0.9059e0.3577x1                                                                                               (6) 

only for values for X1: 

X1 = −0.6857666234; 

X1 = 0.6092238139. 

The function Y (for these values for X1) takes values accordingly: 

Y(X1 = −0.6857666234) = 0.7088402640                                                                                       (7) 

Y(X1 = 0.6092238139) = 1.126474680                                                                                       (8) 
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Fig. 2 Graphical results of the approximations of the function (2) for variant 1.  

The numerical results of the linear and exponential approximation of the function (2) for the second 
variant are given in Table 2. 

Table 2. Numerical results of the approximations of the function (2) for variant 2. 

𝐗𝐗𝟑𝟑 Linear Approximation  
𝐘𝐘 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 + 𝟎𝟎.𝟑𝟑𝟑𝟑𝟎𝟎𝟎𝟎𝐱𝐱𝟑𝟑 

Exponential 
Approximation 
𝐘𝐘 = 𝟎𝟎.𝟑𝟑𝟕𝟕𝟎𝟎𝟗𝟗𝒆𝒆𝟎𝟎.𝟗𝟗𝟗𝟗𝟎𝟎𝟑𝟑𝒙𝒙𝟑𝟑 

-1.00 0.52750 0.546488 
-0.75 0.59000 0.593515 
-0.50 0.65250 0.644589 
-0.25 0.71500 0.700058 
 0.00 0.77750 0.760300 
+0.25 0.84000 0.825726 
+0.50 0.90250 0.896782 
+0.75 0.96500 0.973953 
+1.00 1.02750 1.057765 

 

The graphical results of the linear and exponential approximation of the function (2) for the second 
variant are presented in figure 3. 

For 2nd variant: the linear and exponential approximation coincide, i.e. 

YLinAppr = YExpAppr,                                                                                                                     (9) 

where: 

YLinAppr = Y = 0.7775 + 0.2500x2                                                                                                           (10) 

YExpAppr = Y = 0.7603e0.3302x2,                                                                                                 (11) 

when: 

0.7775 + 0.2500x2 = 0.7603e0.3302x2                                                                                       (12) 

only for values for X2: 
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Fig. 3 Graphical results of the approximations of the function (2) for variant 2.  

X2 = −0.6821481353; 

X2 = 0.6108059334. 

The function Y (for these values for X2) takes values accordingly: 

Y(X2 = −0.6821481353) = 0.6069629662                                                                                    (13) 

Y(X2 = 0.6108059334) = 0.9302014834                                                                                         (14) 

The numerical results of the linear and exponential approximation of the function (2) for the third variant 
are given in Table 3. The graphical results of the linear and exponential approximation of the function (2) 
for the third variant are presented in figure 4. 

For 3rd variant: the linear and exponential approximation coincide, i.e. 

YLinAppr = YExpAppr,                                                                                                             (15) 

Table 3. Numerical results of the approximations of the function (2) for variant 3. 

𝐗𝐗𝟗𝟗 Linear Approximation  
𝐘𝐘 = 𝟎𝟎.𝟑𝟑𝟕𝟕 + 𝟎𝟎.𝟏𝟏𝟑𝟑𝟑𝟑𝟑𝟑𝐱𝐱𝟗𝟗 

Exponential 
Approximation 
𝐘𝐘 = 𝟎𝟎.𝟑𝟑𝟗𝟗𝟏𝟏𝐞𝐞𝟎𝟎.𝟑𝟑𝟕𝟕𝟗𝟗𝟕𝟕𝐱𝐱𝟗𝟗 

-1.00 0.56250 0.573073 
-0.75 0.60688 0.609028 
-0.50 0.65125 0.647238 
-0.25 0.69563 0.687845 
 0.00 0.74000 0.731000 
+0.25 0.78438 0.776863 
+0.50 0.82875 0.825603 
+0.75 0.87313 0.877400 
+1.00 0.91750 0.932448 
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Fig. 4 Graphical results of the approximations of the function (2) for variant 3. 

where: 

YLinAppr = Y = 0.74 + 0.1775x3                                                                                                           (16) 

YExpAppr = Y = 0.731e0.2434x3,                                                                                             (17) 

when: 

0.74 + 0.1775x3 = 0.731e0.2434x3                                                                                           (18) 

only for values for X3: 

X3 = −0.6727381075; 

X3 = 0.6192396062. 

The function Y (for these values for X3) takes values accordingly: 

Y(X3 = −0.6727381075) = 0.6205889859                                                                                     (19) 

Y(X3 = 0.6192396062) = 0.8499150301                                                                                     (20) 

The summarized numerical results for the value of the investigated function (2) for linear and exponential 
approximation are presented graphically in Figure 5. 

3.2 Discussion of the obtained numerical results 
The investigation shows that the optimal value of the function Y is reached at a point with coordinates (-
0.9999;-1;-1) and this value is 0.49249999, i.e., 

Ymin = Y (X1 = −0.99999999999999988; X2 = −1; X3 = −1) = 0.49249999                                      (21) 

The differences in the values at the local minimum of the studied function (2) and the local minima of the 
function in the considered variants are insignificant of the order of at most 10−1. 

This is due to rounding one of the variables 𝑋𝑋1 from -0.99999999999999988 to -1. (The used software 
rounds the data.) 
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Fig. 5 Movement of the value of the objective function 𝑌𝑌. 

For each of the considered variants the coefficient of determination R2 is determined /table 4/ for the 
linear and exponential approximation of the function (2) respectively. The results for R2 show the high 
efficiency of both approximation models /linear and exponential/. 

The data in Table 4 mean that: 

- the model in the linear approximation explains between 99.07% and 99.63% of the experimental data; 

- the exponential approximation model explains between 98.96% and 99.52% of the experimental data. 

Therefore, the linear approximation of the investigated function (2) is more efficient. 

Table 4. Values of the coefficient of determination R2 in the linear and the exponential approximation. 
 1st variant  2nd variant 3rd variant 
𝐑𝐑𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋
𝟑𝟑  0.9907 0.9932 0.9963 

𝐑𝐑𝐄𝐄𝐱𝐱𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋
𝟑𝟑  0.9896 0.9912 0.9952 

4 Conclusions 
The present work investigates the nature of a function describing the TMF interfacing process. The 
function gives the relationship between the quality criterion Y (the change of the color shade of the textile 
material after TMF interfacing process) and the input factors X1 - the pressure P, [N / cm2]; X2 - the 
temperature of the pressing plates T, [° C]; X3 - the mass per unit area of basic textile materials M, [g / 
m2] [15]. An approximation by interpolation was applied for the purpose of the study. 

A numerical realization of a linear and exponential approximation of the mathematical model describing 
the TMF interfacing process was performed. Three generalized variants with different values of the input 
factors were taken into consideration. For each of the studied variants, the corresponding values for the 
change of the color shade of the TM after TMF interfacing process were obtained. 
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An effective linear approximation of the function connecting the quality criterion with the input factors of 
the TMF interfacing process was found. This creates conditions for replacing the relatively complex 
function (describing the TMF interfacing process) with its linear approximation. The linear approximation 
makes it easier and faster to determine the relationships between the input factors and the quality 
criterion. This is of essential importance for the quality and efficiency of the TMF interfacing process.  

Of course, the proposed mathematical model of the process and its linear approximation can be applied 
to the described operating conditions / for the respective type of press used, for the respective types of 
textile materials, etc./. The principles and methods of research of TMF interfacing process / used in the 
present work / can also be applied in the research of other textile materials, when working with another 
type of press, etc. 

It can be summarized that the proposed methodology for research and analysis of the TMF interfacing 
process is applicable to different operating conditions. 

In the present work, a specific technological process was studied and analyzed using mathematical 
methods and modern software products. An effective approximation of a mathematical model of the 
process was applied. This created conditions for facilitating the work, for ignoring the subjective factor 
and for optimizing and automating the studied technological process. 
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