Influence of environmental temperature on the hand-feel perception of textiles

Authors

  • Lars Claussen Environmental Ergonomics Research Centre, Loughborough School of Design and Creative Arts, Loughborough University, Loughborough, UK https://orcid.org/0000-0003-3778-1261
  • Kimberly Lim Ergonomics Research Centre, Loughborough School of Design and Creative Arts, Loughborough University, Loughborough, UK
  • Julia Wilfling Environmental Ergonomics Research Centre, Loughborough School of Design and Creative Arts, Loughborough University, Loughborough, UK https://orcid.org/0000-0002-9258-3391
  • Alex Lloyd Environmental Ergonomics Research Centre, Loughborough School of Design and Creative Arts, Loughborough University, Loughborough, UK https://orcid.org/0000-0003-0657-3582
  • Daniel Ruiz adidas Innovation, adidas AG, Herzogenaurach, Germany https://orcid.org/0000-0002-0519-0638
  • George Havenith Environmental Ergonomics Research Centre, Loughborough School of Design and Creative Arts, Loughborough University, Loughborough, UK https://orcid.org/0000-0001-6223-4265

DOI:

https://doi.org/10.25367/cdatp.2023.4.p95-109

Keywords:

textiles, temperature, hand-feel, touch, fabric hand, perception, tactile sensivity, haptic, comfort

Abstract

The present study investigated the effect of environmental temperature on the hand-feel perception of textiles. Participants were exposed to three different climate conditions (10 °C/20 °C/
30 °C, RH 65 %) to simulate cool, mild, and warm environments. Hand-feel attributes, comfort, and preferences of a wide range of textiles were rated by the participants. Participants’ body responses to the different temperatures were controlled by monitoring participants’ aural temperature, mean skin temperature, hand temperature, tactile sensitivity, and environmental perception. Fabric weight was measured to monitor changes in textile properties induced by the different environmental conditions. The outcomes of the study suggest that the environmental temperature led to significant changes in participants’ aural temperature, mean skin temperature, hand temperature, tactile sensitivity, and environmental perception, affecting the hand-feel perception of the different textiles. Thus, the present study provides insight for practitioners to develop more comfortable textiles for specific environmental temperatures by establishing a basis for understanding how environmental temperature, body responses, and hand feel perception interact.

References

Hollies, N. R. S.; Custer, A. G.; Morin, C. J.; Howard, M. E. A Human Perception Analysis Approach to Clothing Comfort. Text. Res. J., 1979, 49 (10), 557–564. DOI: https://doi.org/10.1177/004051757904901001.

Naebe, M.; Yu, Y.; McGregor, B. A.; Tester, D.; Wang, X. The Effect of Humidity and Temperature on Wool ComfortMeter Assessment of Single Jersey Wool Fabrics. Text. Res. J., 2013, 83 (1), 83–89. DOI: https://doi.org/10.1177/0040517512441988.

Fourt, L.; Hollies, N. R. S. Clothing Comfort and Function. Cloth. Comf. Funct., 1970.

Mecheels, J. Körper, Klima, Kleidung : Grundzüge Der Bekleidungsphysiologie; Schiele & Schön, 1991.

Bartels, V. T. Physiological Comfort of Sportswear. In Textiles in Sport; Elsevier Ltd., 2005; pp 177–203. DOI: https://doi.org/10.1533/9781845690885.3.177.

Slater, K. Human Comfort, Volume 2.; Thomas, C.C.: Springfield, Ill., USA, 1985.

Bishop, D. P. Fabrics: Sensory and Mechanical Properties. Text. Prog., 1996, 26 (3), 1–62. DOI: https://doi.org/10.1080/00405169608688866.

Claussen, L.; Lloyd, A.; Ruiz, D.; Havenith, G. Experts’ Views on Sports Clothing Quality. Int. J. Fash. Des. Technol. Educ., 2021, 1–12. DOI: https://doi.org/10.1080/17543266.2021.2011432.

Kamalha, E.; Zeng, Y.; Mwasiagi, J. I.; Kyatuheire, S. The Comfort Dimension; a Review of Perception in Clothing. J. Sens. Stud., 2013, 28 (6), 423–444. DOI: https://doi.org/10.1111/joss.12070.

Bartels, V. T. Contact Sensations of Medical Textiles on the Skin. In Handbook of Medical Textiles; Elsevier Inc., 2011; pp 221–247. DOI: https://doi.org/10.1533/9780857093691.2.221.

Das, A.; Alagirusamy, R. Improving Tactile Comfort in Fabrics and Clothing. In Improving Comfort in Clothing; Elsevier, 2011; pp 216–244. DOI: https://doi.org/10.1533/9780857090645.2.216.

Cheung, S. S. Responses of the Hands and Feet to Cold Exposure. Temperature, 2015, 2 (1), 105–120. DOI: https://doi.org/10.1080/23328940.2015.1008890.

Havenith, G.; Heus, R.; Daanen, H. A. M. The Hand in the Cold, Performance and Risk. Arctic Med. Res., 1995, 54, 37–47.

A. GESCHEIDER, G.; THORPE, J. M.; GOODARZ, J.; BOLANOWSKI, S. J. The Effects of Skin Temperature on the Detection and Discrimination of Tactile Stimulation. Somatosens. Mot. Res., 1997, 14 (3), 181–188. DOI: https://doi.org/10.1080/08990229771042.

Bolanowski Jr, S. J.; Verrillo, R. T. Temperature and Criterion Effects in a Somatosensory Subsystem: A Neurophysiological and Psychophysical Study. J. Neurophysiol., 1982, 48 (3), 836–855.

Bolanowski, S. J.; Gescheider, G. A.; Verrillo, R. T.; Checkosky, C. M. Four Channels Mediate the Mechanical Aspects of Touch. J. Acoust. Soc. Am., 1988, 84 (5), 1680–1694. DOI: https://doi.org/10.1121/1.397184.

Green, B. G. The Effect of Skin Temperature on Vibrotactile Sensitivity. Percept. Psychophys., 1977, 21 (3), 243–248. DOI: https://doi.org/10.3758/BF03214234.

Green, B. G. The Effect of Skin Temperature on the Perception of Roughness. Sens. Process, 1979, 3, 327–333.

Morton, R.; Provins, K. A. Finger Numbness after Acute Local Exposure to Cold. J. Appl. Physiol., 1960, 15 (1), 149–154. DOI: https://doi.org/10.1152/jappl.1960.15.1.149.

Provins, K. A.; Morton, R. Tactile Discrimination and Skin Temperature. J. Appl. Physiol., 1960, 15 (1), 155–160. https://doi.org/10.1152/jappl.1960.15.1.155.

Stevens, J. C.; Green, B. G.; Krimsley, A. S. Punctate Pressure Sensitivity: Effects of Skin Temperature. Sens. Processes, 1977, 1 (3), 238–243.

Verrillo, R. T.; Bolanowski, S. J. The Effects of Skin Temperature on the Psychophysical Responses to Vibration on Glabrous and Hairy Skin. J. Acoust. Soc. Am., 1986, 80 (2), 528–532. DOI: https://doi.org/10.1121/1.394047.

Liao, X.; Li, Y.; Hu, J.; Ding, X.; Zhang, X.; Ying, B.; Takatera, M.; Sukigara, S.; Pan, F.; Sun, Y.; et al. Effects of Contact Method and Acclimation on Temperature and Humidity in Touch Perception. Text. Res. J., 2018, 88 (14), 1605–1615. DOI: https://doi.org/10.1177/0040517517705628.

Gwosdow, A. R.; Stevens, J. C.; Berglund, L. G.; Stolwijk, J. A. J. Skin Friction and Fabric Sensations in Neutral and Warm Environments. Text. Res. J., 1986, 56 (9), 574–580. DOI: https://doi.org/10.1177/004051758605600909.

Stanton, J. H.; Speijers, J.; Naylor, G. R.; Pieruzzini, S.; Beilby, J.; Barsden, E.; Clarke, A. Skin Comfort of Base Layer Knitted Garments. Part 1: Description and Evaluation of Wearer Test Protocol. Text. Res. J., 2014, 84 (13), 1385–1399. DOI: https://doi.org/10.1177/0040517514521114.

British Standards Institution. BS EN 12127:1998, Textiles. Fabrics. Determination of Mass per Unit Area Using Small Samples; 1998.

Ramanathan, N. L. A New Weighting System for Mean Surface Temperature of the Human Body. J. Appl. Physiol., 1964, 19 (3), 531–533. DOI: https://doi.org/10.1152/jappl.1964.19.3.531.

Foster, J.; Lloyd, A. B.; Havenith, G. Non-Contact Infrared Assessment of Human Body Temperature: The Journal Temperature Toolbox. Temperature, 2021, 8 (4), 306–319. DOI: https://doi.org/10.1080/23328940.2021.1899546.

Moreira, D. G.; Costello, J. T.; Brito, C. J.; Adamczyk, J. G.; Ammer, K.; Bach, A. J. E.; Costa, C. M. A.; Eglin, C.; Fernandes, A. A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol., 2017, 69, 155–162. DOI: https://doi.org/10.1016/j.jtherbio.2017.07.006.

Dyck, P. J.; O’Brien, P. C.; Kosanke, J. L.; Gillen, D. A.; Karnes, J. L. A 4, 2, and 1 Stepping Algorithm for Quick and Accurate Estimation of Cutaneous Sensation Threshold. Neurology, 1993, 43 (8), 1508–1508. DOI: https://doi.org/10.1212/WNL.43.8.1508.

ASHRAE. ANSI/ASHRAE Standard 55-2017 : Thermal Environmental Conditions for Human Occupancy. ASHRAE Inc., 2017, 2017, 66.

American Association of Textile Chemists and Colorists. AATCC EP5-1996e2(2020), Evaluation Procedure for Fabric Hand; 2020.

Cardello, A. V.; Winterhalter, C.; Schutz, H. G. Predicting the Handle and Comfort of Military Clothing Fabrics from Sensory and Instrumental Data: Development and Application of New Psychophysical Methods. Text. Res. J., 2003, 73 (3), 221–237. DOI: https://doi.org/10.1177/004051750307300306.

Havenith, G. Laboratory Assessment of Cold Weather Clothing. In Textiles for Cold Weather Apparel; Elsevier Inc., 2009; pp 217–243. DOI: https://doi.org/10.1533/9781845697174.2.217.

Holmér, I. Human Wear Trials for Cold Weather Protective Clothing Systems. In Textiles for Cold Weather Apparel; Elsevier Inc., 2009; pp 256–273. DOI: https://doi.org/10.1533/9781845697174.2.256.

Parsons, K. Testing and Developing Clothing. In Human Thermal Environments; CRC Press, 2014; pp 235–256. https://doi.org/10.1201/b16750-11.

Weinstein, S. Intensive and Extensive Aspects of Tactile Sensitivity as a Function of Body Part, Sex, and Laterality; 1968.

Andrews, K. The Effect of Changes in Temperature and Humidity on the Accuracy of von Frey Hairs. J. Neurosci. Methods, 1993, 50 (1), 91–93. DOI: https://doi.org/10.1016/0165-0270(93)90059-Z.

Temel, M.; Johnson, A. A.; Lloyd, A. B. Body Mapping of Skin Friction Coefficient and Tactile Perception during the Dynamic Skin-Textile Interaction. Ergonomics, 2022, 1–16. DOI: https://doi.org/10.1080/00140139.2022.2152112.

Wilfling, J.; Havenith, G.; Raccuglia, M.; Hodder, S. Can You See the Feel? The Absence of Tactile Cues in Clothing e-Commerce Impairs Consumer Decision Making. Int. J. Fash. Des. Technol. Educ., 2022, 1–10. DOI: https://doi.org/10.1080/17543266.2022.2154396.

Li, Y. The Science of Clothing Comfort. Text. Prog., 2001, 31 (1–2), 1–135. DOI: https://doi.org/10.1080/00405160108688951.

Raccuglia, M.; Pistak, K.; Heyde, C.; Qu, J.; Mao, N.; Hodder, S.; Havenith, G. Human Wetness Perception of Fabrics under Dynamic Skin Contact. Text. Res. J., 2018, 88 (19), 2155–2168. DOI: https://doi.org/10.1177/0040517517716905.

Heine, S. J.; Lehman, D. R.; Peng, K.; Greenholtz, J. What’s Wrong with Cross-Cultural Comparisons of Subjective Likert Scales?: The Reference-Group Effect. J. Pers. Soc. Psychol., 2002, 82 (6), 903–918. DOI: https://doi.org/10.1037/0022-3514.82.6.903.

Textile Comofrt Rating

Published

2023-03-25

How to Cite

Claussen, L., Lim, K., Wilfling, J., Lloyd, A., Ruiz, D., & Havenith, G. . (2023). Influence of environmental temperature on the hand-feel perception of textiles. Communications in Development and Assembling of Textile Products, 4(1), 95-109. https://doi.org/10.25367/cdatp.2023.4.p95-109

Issue

Section

Peer-reviewed articles