Preliminary report on MFM measurements on magnetic nanofiber mats

Authors

  • Raphael Weiss FH Bielefeld
  • Andrea Ehrmann

DOI:

https://doi.org/10.25367/cdatp.2021.2.p1-7

Keywords:

Atomic force microscopy (AFM),, Magnetic force microscopy (MFM),, Electrospinning, Magnetic nanofiber mats, Magnetite

Abstract

Nanofiber mats can be produced unambiguously by electrospinning. Besides pure polymers or polymer blends, such nanofibers can also contain metals, ceramics, etc., often introduced in the form of nanoparticles embedded in the spinning solution. Especially in case of magnetic nanoparticles, the physical properties of the whole nanofiber mats will strongly depend on the dispersion of the nanoparticles in the fibers – while small single nanoparticles may show superparamagnetic behavior, larger agglomerations will rather tend to showing ferromagnetic properties. Investigations of the magnetic properties of a sample with high spatial resolution are mostly performed by magnetic force microscopy (MFM). This technique, however, is usually applied on very flat surfaces of thin-film or nanostructured samples. Here, we report for the first time on MFM measurements on magnetic nanofiber mats, proving in principle that this technique can be used to investigate magnetic nanofiber mats, while the highly uneven nanofiber structure still causes large problems which have to be solved in the future.

References

T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, S. S. Ramkumar. 2005. Electrospinning of nanofibers. J. Appl. Polymer Sci. 96, 2, 557-569. DOI: https://doi.org/10.1002/app.21481

D. Li, Y. Xia. 2004. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 14, 1151-1170. DOI: https://doi.org/10.1002/adma.200400719

A. Greiner, J. H. Wendorff. 2007. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 30, 5670-5703. DOI: https://doi.org/10.1002/anie.200604646

A. Mamun. 2019. Review of possible applications of nanofibrous mats for wound dressings. Tekstilec 62, 2, 89-100. DOI: https://doi.org/10.14502/Tekstilec2019.62.89-100

N. Ashammakhi, A. Ndreu, Y. Yang, H. Ylikauppila, L. Nikkola. 2012. Nanofiber-based scaffolds for tissue engineering. Eur. J. Plast. Surg. 35, 2, 135-149. DOI: https://doi.org/10.1007/s00238-008-0217-3

J. Bockelmann, K. Klinkhammer, A. von Holst, N. Seiler, A. Faissner, G. A. Brook, D. Klee, J. Mey. 2011. Functionalization of electrospun poly(ε-caprolactone) fibers with the extracellular matrix-derived peptide GRGDS improves guidance of Schwann cell migration and axonal growth. Tissue Eng. A 17, 3-4, 475-486. DOI: https://doi.org/10.1089/ten.tea.2010.0369

X. Wang, Y. G. Kim, C. Drew, B. C. Ku, J. Kumar, L. A. Samuelson. 2004. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett. 4, 2, 331-334. DOI: https://doi.org/10.1021/nl034885z

B. Yalcinkaya, F. Yalcinkaya, J. Chaloupek. 2016. Thin film nanofibrous composite membrane for dead-end seawater desalination. J. Nanomater. 2016, 2694373. DOI: https://doi.org/10.1155/2016/2694373

R. Roche, F. Yalcinkaya. 2019. Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. ChemistryOpen 8, 97-103. DOI: https://doi.org/10.1002/open.201800267

R. Torres-Mendieta, F. Yalcinkaya, E. Boyraz, O. Havelka, W. Waclawek, J. Maryska, M. Cerník, M. Bryjak. 2020. PVDF nanofibrous membranes modified via laser-synthesized Ag nanoparticles for a cleaner oily water separation. Appl. Surf. Sci. 526, 146575. DOI: https://doi.org/10.1016/j.apsusc.2020.146575

J. F. Pan, N. H. Liu, H. Sun, F. Xu. 2014. Preparation and characterization of electrospun PLCL/poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering. PLoS ONE 9, e112885. DOI: https://doi.org/10.1371/journal.pone.0112885

T. Grothe, D. Wehlage, T. Böhm, A. Remche, A. Ehrmann. 2017. Needleless electrospinning of PAN nanofiber mats. Tekstilec 60, 290-295. DOI: https://doi.org/10.14502/Tekstilec2017.60.290-2

T. Maver, M. Kurecic, D. M. Smrke, K. S. Kleinschek, U. Maver. 2016. Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J. Sol-Gel Sci. Technol. 79, 475-486. DOI: https://doi.org/10.1007/s10971-015-3888-9

B. Ebrahimi-Hosseinzadeh, M. Pedram, A. Hatamian-Zarmi, S. Salahshour-Kordestani, M. Rasti, Z. B. Mokhtari-Hosseini, M. Mir-Derikvand. 2016. In vivo evaluation of gelatin/hyaluronic acid nanofiber as burn-wound healing and its comparison with ChitoHeal gel. Fibers Polym. 17, 820-826. DOI: https://doi.org/10.1007/s12221-016-6259-4

K.-H. Na, W.-T. Kim, D.-C. Park, H. G. Shin, S. H. Lee, J. S. Park, T. H. Song, W. Y. Choi. 2018. Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process. Thin Sol. Films 660, 358-364. DOI: https://doi.org/10.1016/j.tsf.2018.06.018

R. J. R. Matos, C. I. P. Chaparro, J. C. Silva, M. A. Valente, J. P. Borges, P. I. P. Soares. 2018. Electrospun composite cellulose acetate/iron oxide nanoparticles non-woven membranes for magnetic hyperthermia applications. Carbohydr. Polym. 198, 9-16. DOI: https://doi.org/10.1016/j.carbpol.2018.06.048

H. H. Liu, Y. J. Li, M. W. Yuan, G. B. Sun, Q. L. Liao, Y. Zhang. 2018. Solid and macroporous Fe3C/N-C nanofibers with enhanced electromagnetic wave absorbability. Sci. Rep. 8, 16832. DOI: https://doi.org/10.1038/s41598-018-35078-z

K.-Y. A. Lin, M.-T. Yang, J.-T. Lin, Y. C. Du. 2018. Cobalt ferrite nanoparticles supported on electrospun carbon fiber as a magnetic heterogeneous catalyst for activating peroxymonosulfate. Chemosphere 208, 502-511. DOI: https://doi.org/10.1016/j.chemosphere.2018.05.127

Y. Q. Zhan, Z. H. Long, X. Y. Wan, J. M. Zhang, S. J. He, Y. He. 2018. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Appl. Surf. Sci. 444, 710-720. DOI: https://doi.org/10.1016/j.apsusc.2018.03.006

K.-S. Ryu, L. Thomas, S.-H. Yang, S. S. P. Parkin. 2012. Appl. Current induced tilting of domain walls in high velocity motion along perpendicularly magnetized micron-sized Co/Ni/Co racetracks. Phys. Expr. 5, 093006. DOI: https://doi.org/10.1143/APEX.5.093006

O. Alejos, V. Raposo, L. S. Tejerina, E. Martinez. 2017. Efficient and controlled domain wall nucleation for magnetic shift registers. Sci. Rep. 7, 11909. DOI: https://doi.org/10.1038/s41598-017-12230-9

C. Garg, S.-H. Yang, T. Phung, A. Pushp, S. S. P. Parkin. Dramatic influence of curvature of nanowire on chiral domain wall velocity. Sci. Adv. 3, e1602804. DOI: https://doi.org/10.1126/sciadv.1602804

T. Blachowicz, A. Ehrmann. 2018. Magnetization reversal in bent nanofibers of different cross-sections. J. Appl. Phys. 124, 152112. DOI: https://doi.org/10.1063/1.5022065

C. Döpke, T. Grothe, P. Steblinski, M. Klöcker, L. Sabantina, D. Kosmalska, T. Blachowicz, A. Ehrmann. 2019. Magnetic nanofiber mats for data storage and transfer. Nanomater, 9, 92. DOI: https://doi.org/10.3390/nano9010092

N. Fokin, T. Grothe, A. Mamun, M. Trabelsi, M. Klöcker, L. Sabantina, C. Döpke, T. Blachowicz, A. Hütten, A. Ehrmann. 2020. Magnetic properties of electrospun magnetic nanofiber mats after stabilization and carbonization. Materials 13, 7, 1552. DOI: https://doi.org/10.3390/ma13071552

M. Wortmann, A. S. Layland, N. Frese, U. Kahmann, T. Grothe, J. L. Storck, T. Blachowicz, J. Grzybowski, B. Hüsgen, A. Ehrmann. 2020. On the reliability of highly magnified micrographs for structural analysis in materials science. Sci. Rep. 10, 14708. DOI: https://doi.org/10.1038/s41598-020-71682-8.

J. I. Martín, J. Nogués, K. Liu, J. L. Vicent, Ivan K. Schuller. 2003. Ordered magnetic nanostructures: fabrication and properties. J. Magn. Magn. Mater. 256, 1-3, 449-501. DOI: https://doi.org/10.1016/S0304-8853(02)00898-3

M. Donolato, C. Tollan, J. M. Porro, A. Berger, P. Vavassori. 2013. Flexible and stretchable polymers with embedded magnetic nanostructures. Adv. Mater. 25, 4, 623-629. DOI: https://doi.org/10.1002/adma.201203072

K. Prashanthi, P. M. Shaibani, A. Sohrabi, T. S. Natarajan, T. Thundat, T. Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Stat. Sol. RRL 6, 6, 244-246. DOI: https://doi.org/10.1002/pssr.201206135

K. Prashanthi, T. Thundat. 2014. In situ study of electric field-induced magnetization in multiferroic BiFeO3 nanowires. Scanning 36, 224-230. DOI: https://doi.org/10.1002/sca.21092

S. Choopani, F. Samavat, E. N. Kolobova, A. M. Grishin. 2020. Ferromagnetic resonance and magnetic anisotropy in biocompatible Y3Fe5O12@Na0.5K0.5NbO3 core-shell nanofibers. Ceramics International 46, 2072-2078. DOI: https://doi.org/10.1016/j.ceramint.2019.09.187

N. Liu, P. C. Du, P. Zhou, R. G. Tanguturi, Y. J. Qi, T. J. Zhang. Magnetoelectric coupling in CoFe2O4-Pb(Zr0.2Ti0.8)O3 coaxial nanofibers. J. Am. Ceram. Soc. 00, 1-7. DOI: https://doi.org/10.1111/jace.17494

A. Lisfi, J. C. Lodder. 2001. Magnetic domains in Co thin films obliquely sputtered on a polymer substrate. Phys. Rev. B 63, 174441. DOI: https://doi.org/10.1103/PhysRevB.63.174441

J. L. Storck, T. Grothe, A. Mamun, L. Sabantina, M. Klöcker, T. Blachowicz, A. Ehrmann. 2020. Orientation of electrospun magnetic nanofibers near conductive areas. Materials 13, 47. DOI: https://doi.org/10.3390/ma13010047

AFM topography image of a carbonized magnetic nanofiber mat

Published

2021-01-15

How to Cite

Weiss, R., & Ehrmann, A. (2021). Preliminary report on MFM measurements on magnetic nanofiber mats. Communications in Development and Assembling of Textile Products, 2(1), 1-7. https://doi.org/10.25367/cdatp.2021.2.p1-7

Issue

Section

Peer-reviewed articles