Air drag coefficient of textile-covered elastic cylinders – preliminary aerodynamic studies

Authors

  • Jana Siegmund Chair of Development and Assembly of Textile Products, Institute of Textile Machinery and High Performance Material Technology (ITM) TU Dresden, Dresden, Germany
  • Ellen Wendt Chair of Development and Assembly of Textile Products, Institute of Textile Machinery and High Performance Material Technology (ITM) TU Dresden, Dresden, Germany
  • Stefan Rothe Chair of Development and Assembly of Textile Products, Institute of Textile Machinery and High Performance Material Technology (ITM) TU Dresden, Dresden, Germany https://orcid.org/0000-0001-5750-761X
  • Yordan Kyosev Chair of Development and Assembly of Textile Products, Institute of Textile Machinery and High Performance Material Technology (ITM) TU Dresden, Dresden, Germany https://orcid.org/0000-0003-3376-1423
  • Veit Hildebrandt Chair of Flight Mechanics and Control, TU Dresden, Dresden, Germany
  • Harald Pfifer Chair of Flight Mechanics and Control, TU Dresden, Dresden, Germany https://orcid.org/0000-0001-6734-704X
  • Sebastian Schubert Chair of Flight Mechanics and Control, TU Dresden, Dresden, Germany
  • Stefan Schleifenbaum ZESBO - Center for Research on Musculoskeletal Systems, Klinik und Poliklinik für Unfall-, Wiederherstellungs- und Plastische Chirurgie, University of Leipzig, Leipzig, Germany https://orcid.org/0000-0002-9075-3756

DOI:

https://doi.org/10.25367/cdatp.2021.2.p187-195

Keywords:

clothing-body interaction, soft body, wind channel, elasticity, cylinder

Abstract

This paper presents preliminary experimental results on the influence on the aerodynamic drag of a cylinder from the cylinder type (i.e., rigid or soft) and its textile surface. Both a rigid cylinder and a soft-body cylinder, with a gelatin layer, each with five different textile surfaces were measured in the wind tunnel using force measurement technology. The drag coefficient was determined for several Reynolds numbers. The study shows that the elasticity of a cylinder has a significant influence on the drag force and the airflow type. However, the influence of the soft-body cylinder depends on the respective fabric. With the given measurements, no exact statements can yet be made to quantify the influence. This influence must be studied independently and in conjunction with the textile surface in order to gain understanding of the overall system of airflow, textile and elastic body.

References

Frederich, O. Numerische Simulation und Analyse turbulenter Strömungen am Beispiel der Umströmung eines Zylinderstumpfes mit Endscheibe. Zugl.: Berlin, Techn. Univ. Dissertation thesis, 2010, Univ.-Verl. der TU, Berlin, Germany.

Hucho, W.-H. Aerodynamik der stumpfen Körper. Physikalische Grundlagen und Anwendungen in der Praxis; mit 56 Tabellen. 2012. Vieweg+Teubner Verlag, Wiesbaden, Germany.

Moria, H.; Chowdhury, H.; Aldawi, F.; Alam, F. A cylindrical methodology for the study of fabric aerodynamics. Procedia Engineering 2013, 56, 297-302. DOI: https://doi.org/10.1016/j.proeng.2013.03.121.

Neumann, D. Widerstandsminderung durch Rillenstrukturen auf der Oberfläche eines längs angeströmten Kreiszylinders. Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung 1989, 92.

Guttag, M.; Reis, P. M. Active aerodynamic drag reduction on morphable cylinders. Phys. Rev. Fluids 2017, 2, 123903. DOI: https://doi.org/10.1103/PhysRevFluids.2.123903.

Kunze, S. Untersuchungen zur Strömungs- Struktur Interaktion an dynamisch bewegten, flexiblen Oberflächen. Dissertation thesis, 2011, Technische Universität Bergakademie Freiberg, Germany.

Mack, C.; Smart, E. J. L. Measurements of the air-drag of textile threads. Journal of the Textile Institute Transactions 1954, 45, 4, T348-T362. DOI: https://doi.org/10.1080/19447025408662656.

Tang, Z.-X.; Wang, X.; Wang, L.; Fraser, W. B. The effect of yarn hairiness on air drag in ring spinning. Textile Research Journal 2006, 76, 7, 559-566. DOI: https://doi.org/10.1177/0040517506064472.

Chen, C. H.; White, J. L.; Spruiell, J. E.; Goswami, B. C. Dynamics, air drag, and orientation development in the spunbonding process for nonwoven fabrics. Textile Research Journal 1983, 53, 1, 44.51. DOI: https://doi.org/10.1177/004051758305300108.

Oggiano, L.; Roar, S. L.; Morten, B. L.; Brian, H. Air permeability and drag crisis on high tech fabrics for cross country ski competitions. Procedia Engineering 2012, 34, 15-19. DOI: https://doi.org/10.1016/j.proeng.2012.04.004

Bardal, L. M.; Reid, R. The effect of textile air permeability on the drag of high-speed winter sports apparel. Sports Eng. 2014, 17, 2, 83-88. DOI: https://doi.org/10.1007/s12283-013-0134-y.

Chowdhury, H.; Alam, F.; Subic, A. Aerodynamic performance evaluation of sports textile. Procedia Engineering 2010, 2, 2, 2517-2522. DOI: https://doi.org/10.1016/j.proeng.2010.04.025.

Fackler, M. L.; Malinowski, J. A. Ordnance gelatin for ballistic studies. Detrimental effect of excess heat used in gelatin preparation. The American Journal of Forensic Medicine and Pathology 1988, 9, 3, 218-219.

Maiden, N. R.; Fisk, W.; Wachsberger, C.; and Byard, R. W. Ballistics ordnance gelatine – How different concentrations, temperatures and curing times affect calibration results. Journal of Forensic and Legal Medicine 2015, 34, 145-150. DOI: https://doi.org/10.1016/j.jflm.2015.05.019.

Testing equipment for measurement of the drag coefficient at different Reynolds numbers in a wind tunnel

Published

2021-12-16

How to Cite

Siegmund, J., Wendt, E., Rothe, S., Kyosev, Y., Hildebrandt, V., Pfifer, H., Schubert, S., & Schleifenbaum, S. (2021). Air drag coefficient of textile-covered elastic cylinders – preliminary aerodynamic studies. Communications in Development and Assembling of Textile Products, 2(2), 187-195. https://doi.org/10.25367/cdatp.2021.2.p187-195

Issue

Section

Peer-reviewed articles