Shape memory textiles – technological background and possible applications

Authors

DOI:

https://doi.org/10.25367/cdatp.2021.2.p162-172

Keywords:

shape memory properties, 3D printing, 4D printing, polyurethane, wrinkle-free, design, stimulus, smart textile, recovery

Abstract

While shape memory alloys (SMAs) and shape memory polymers (SMPs) can already be found in diverse applications, shape memory textiles are less often used. Nevertheless, they are regularly investigated. Typical ways to produce shape memory textiles (SMTs) are introducing shape memory wires, printing shape memory polymers on them (“4D printing”), or using textile materials such as poly(lactic acid) (PLA) which show shape memory properties on their own. This review gives a brief overview of these technological possibilities and possible applications of shape memory textiles.

References

Meng, Q. H.; Hu, J. L. A review of shape memory polymer composites and blends. Composites Part A: Applied Science and Manufacturing 2009, 40, 1661-1672. DOI: https://doi.org/10.1016/j.compositesa.2009.08.011

Metcalfe, A.; Desfaits, A.-C; Salazkin, I.; Yahia, L’Hocine, Sokolowski, W. M.; Raymond, J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 2003, 24, 491-497. DOI: https://doi.org/10.1016/S0142-9612(02)00362-9.

Wache, H. M.; Tartakowska, D. J.; Hentrich, A.; Wagner, M. H. Development of a polymer stent with shape memory effect as a drug delivery system. Journal of Materials Science: Materials in Medicine 2003, 14, 109-112. DOI: https://doi.org/10.1023/A:1022007510352.

Yakacki, C.M.; Shandas, R.; Lanning, C.; Rech, B.; Eckstein, A.; Gall, K. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 2007, 28, 2255-2263. DOI: https://doi.org/10.1016/j.biomaterials.2007.01.030.

Blachowicz, T.; Pajak, K.; Recha, P.; Ehrmann, A. 3D printing for microsatellites – material requirements and recent developments. AIMS Mater. Sci. 2020, 7, 926-938. DOI: https://doi.org/10.3934/matersci.2020.6.926.

Scalet, G. Two-way and multiple-way shape memory polymers for soft robotics: an overview. Actuators 2020, 9, 10. DOI: https://doi.org/10.3390/act9010010.

Chen, Y.; Zhao, X.; Li, X.; Jin, Z.-Y.; Yang, Y.; Yang, M.-B.; Yin, B. Light- and magnetic-responsive synergy controlled reconfiguration of polymer nanocomposites with shape memory assisted self-healing performance for soft robotics. Journal of Materials Chemistry C 2021, 9, 5515-5527. DOI: https://doi.org/10.1039/D1TC00468A.

Meng, Q.H.; Hu, J.L.; Yeung, L.Y. An electro-active shape memory fibre by incorporating multi-walled carbon nanotubes. Smart Mater. Struct. 2007, 16, 830-836. DOI: https://doi.org/10.1088/0964-1726/16/3/032.

Gök, M. O.; Bilir, M. Z.; Gürcüm, B. H. Shape-memory applications in textile design. Procedia – Social and Behavioral Sciences 2015, 195, 2160-2169. DOI: https://doi.org/10.1016/j.sbspro.2015.06.283.

Tobshi, H.; Hayashi, S.; Hoshio, K.; Miwa, N. Influence of strain-holding conditions on shape recovery and secondary-shape forming in polyurethane-shape memory polymer. Smart Materials and Structures 2006, 15, 1033. DOI: https://doi.org/10.1088/0964-1726/15/4/016.

Lu, H. B.; Liu, Y. J.; Leng, J. S.; Du, S. Y. Qualitative separation of the physical swelling effect on the recovery behavior of shape memory polymer. European Polymer Journal 2010, 46, 1908-1914. DOI: https://doi.org/10.1016/j.eurpolymj.2010.06.013.

Scirè Mammano, G.; Dragoni, E. Functional fatigue of Ni-Ti shape memory wires under various loading conditions. International Journal of Fatigue 2014, 69, 71-83. DOI: https://doi.org/10.1016/j.ijfatigue.2012.03.004.

Ehrmann, G.; Ehrmann, A. 3D printing of shape memory polymers. Journal of Applied Polymer Science 2021, 138, 50847. DOI: https://doi.org/10.1002/app.50847.

Tibbits, S. 4D Printing: Multi-Material Shape Change. Architectural Design 2014, 84, 116-121. DOI: https://doi.org/10.1002/ad.1710.

Momeni, F.; Hassani.N, S. M. M.; Liu, X.; Ni, J. A review of 4D printing. Materials & Design 2017, 122, 42-79. DOI: https://doi.org/10.1016/j.matdes.2017.02.068.

Champeau, M.; Heinze, D. A.; Viana, T. N.; Rodrigues de Souza, E.; Chinellato, A. C.; Titotto, S. 4D Printing of Hydrogels: A Review. Advanced Functional Materials 2020, 30, 1910606. DOI: https://doi.org/10.1002/adfm.201910606.

Javaid, M.; Haleem, A. 4D printing applications in medical field: A brief review. Clinical Epidemiology and Global Health 2019, 7, 317-321. DOI: https://doi.org/10.1016/j.cegh.2018.09.007.

Korger, M.; Glogowsky, A.; Sanduloff, S.; Steinem, C.; Huysman, S.; Horn, B.; Ernst, M.; Rabe, M. Testing thermoplastic elastomers selected as flexible three-dimensional printing materials for functional garment and technical textile applications. J. Eng. Fibers Fabrics 2020, 15, 1558925020924599. DOI: https://doi.org/10.1177/1558925020924599.

Grimmelsmann, N.; Kreuziger, M.; Korger, M.; Meissner, H.; Ehrmann, A. Adhesion of 3D printed material on textile substrates. Rapid Prototyping J. 2018, 24(1), 166-170. DOI: https://doi.org/10.1108/RPJ-05-2016-0086.

Mpofu, N. S.; Mwasiagi, J. I.; Nkiwane, L. C.; Njuguna, D. Use of regression to study the effect of fabric parameters on the adhesion of 3D printed PLA polymer onto woven fabrics. Fashion and Textiles 2019, 6, 24. DOI: https://doi.org/10.1186/s40691-019-0180-6.

Calvo, J.O.; Martin, A.C.; Ferradas, M.I.R.; Morcillo, P.L.F.; Munoz, L.M.; Camo, P.M. Additive manufacturing on textiles with low-cost extrusion devices: Adhesion and deformation properties. Dyna 2019, 64, 8893. DOI: https://doi.org/10.6036/8893.

Görmer, D.; Störmer, J.; Ehrmann, A. The influence of thermal after-treatment on the adhesion of 3D prints on textile fabrics. Communications in Development and Assembling of Textile Products 2020, 1, 104-110. DOI: https://doi.org/10.25367/cdatp.2020.1.p104-110.

Senatov, F.S.; Zadorozhnyy, M.Y.; Niaza, K.V.; Medvedev, V.V.; Kaloshkin, S.D.; Anisimova, N.Y.; Kiselevskiy, M.V.; Yang, K.-C. Shape memory effect in 3D-printed scaffolds for self-fitting implants. Eur. Polym. J. 2017, 93, 222-231. DOI: https://doi.org/10.1016/j.eurpolymj.2017.06.011.

Langford, T.; Mohammed, A.; Essa, K.; Elshaer, A.; Hassanin, H. 4D printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences 2021, 11, 332. DOI: https://doi.org/10.3390/app11010332.

Ehrmann, G.; Brockhagen, B.; Ehrmann, A. Shape-memory properties of 3D printed cubes frm diverse PLA materials with different post-treatments. Technologies 2021, 9, 71. DOI: https://doi.org/10.3390/technologies9040071.

Zhu, Y.; Hu, J. L.; Yeung, L.-Y.; Liu, Y.; Ji, F. L.; Yeung, K.-w. Development of shape memory polyurethane fiber with complete shape recoverability. Smart Materials and Structures 2006, 15, 1385. DOI: https://doi.org/10.1088/0964-1726/15/5/027.

Singhal, P.; Small, W.; Cosgriff-Hernandez, E.; Maitland, D. J.; Wilson, T. S. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomaterialia 2014, 10, 67-76. DOI: https://doi.org/10.1016/j.actbio.2013.09.027.

Zhao, T. T.; Yu, R.; Li, X. P.; Cheng, B.; Zhang, Y.; Yang, X.; Zhao, X. J.; Zhao, Y. L.; Huang, W. 4D printing of shape memory polyurethane via stereolithography. European Polymer Journal 2018, 101, 120-126. DOI: https://doi.org/10.1016/j.eurpolymj.2018.02.021.

Gupta, V. B. Melt-spinning processes. In: Gupta, V. B.; Kothari, V. K. (eds.), Manufactured Fibre Technology. Springer, Dordrecht, 1997. DOI: https://doi.org/10.1007/978-94-011-5854-1_4.

Yalcinkaya, F. Preparation of various nanofiber layers using wire electrospinning system. Arabian Journal of Chemistry 2019, 12, 5162-5172. DOI: https://doi.org/10.1016/j.arabjc.2016.12.012.

Dalton, P. D.; Grafahrend, D.; Klinkhammer, K.; Klee, D.; Möller, M. Electrospinning of polymer melts: Phenomenological observations. Polymer 2007, 48, 6823-6833. DOI: https://doi.org/10.1016/j.polymer.2007.09.037.

Meng, Y. H.; Hu, J. L.; Zhu, Y.; Lu, J.; Liu, Y. Polycaprolactone-based shape memory segmented polyurethane fiber. Journal of Applied Polymer Science 2007, 106, 2515-2523. DOI: https://doi.org/10.1002/app.26764.

Meng, Y. H.; Hu, J. L.; Zhu, Y.; Lu, J.; Liu, Y. Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Materials and Structures 2007, 16, 1192. DOI: https://doi.org/10.1088/0964-1726/16/4/030.

Meng, Q. H.; Hu, J. L.; Yeung, L. Y.; Hu, Y. The influence of heat treatment on the properties of shape memory fibers. II. Tensile properties, dimensional stability, recovery force relaxation, and thermomechanical cyclic properties. Journal of Applied Polymer Science 2009, 111, 1156-1164. DOI: https://doi.org/10.1002/app.29165.

Kumar, B.; Hu, J. L; Pan, N. Smart medical stocking using memory polymer for chronic venous disorders. Biomaterials 2016, 75, 174-181. DOI: https://doi.org/10.1016/j.biomaterials.2015.10.032.

Kumar, B.; Hu, J. L.; Pan, N. Memory bandage for functional compression management for venous ulcers. Fibers 2016, 4, 10. DOI: https://doi.org/10.3390/fib4010010.

Kumar, B. Shape memory textiles for functional compression management. Veins and Lymphatics 2017, 6, 6633, 23-24. DOI: https://doi.org/10.4081/vl.2017.6633.

Jing, L.; Hu, J. L. Study on the properties of core spun yarn and fabrics of shape memory polyurethane. FIBRES & TEXTILES in Eastern Europe 2010, 18, 39-42.

Ji, F. L.; Zhu, Y.; Hu, J. L.; Liu, Y.; Yeung, L.-Y.; Ye, G. D. Smart polymer fibers with shape memory effect. Smart Materials and Structures 2006, 15, 1547. DOI: https://doi.org/10.1088/0964-1726/15/6/006.

Sáenz-Pérez, M.; Bashir, T.; Laza, J. M.; García-Barrasa, J.; Vilas, J. L.; Krifvars, M.; León, L. M. Novel shape-memory polyurethane fibers for textile applications. Textile Research Journal 2018, 89, 1027-1037. DOI: https://doi.org/10.1177/0040517518760756.

Walczak, J.; Sobota, M.; Chrzanowski, M.; Krucinska, I. Application of the melt-blown technique in the production of shape-memory nonwoven fabrics from a blend of poly(L-lactide) and atactic poly[(R,S)-3-hydroxy butyrate]. Textile Research Journal 2018, 88, 2141-2152. DOI: https://doi.org/10.1177/0040517517716906.

Meng, Q. H.; Hu, J. L.; Uhu, Y.; Lu, J.; Liu, B. H. Biological evaluations of a smart shape memory fabric. Textile Research Journal 2009, 79, 1522-1533. DOI: https://doi.org/10.1177/0040517509101789.

Meng, Q. H.; Hu, J. L.; Zhu, Y. Shape-memory polyurethane/multiwalled carbon nanotube fibers. Journal of Applied Polymer Science 2007, 106, 837-848. DOI: https://doi.org/10.1002/app.26517.

Deng, J.; Zhang, Y.; Zhao, Y.; Chen, P. N.; Cheng, X. L.; Peng, H. S. A shape-memory supercapacitor fiber. Angewandte Chemie – International Edition 2015, 54, 15419-15423. DOI: https://doi.org/10.1002/anie.201508293.

Zhao, L. H.; Qin, L.; Wang, F. M.; Chuah, H. H. Factors affecting recovery of PTT shape memory fabric to its initial shape. International Journal of Clothing Science and Technology 2009, 21, 64-73. DOI: https://doi.org/10.1108/09556220910923764.

Lu, X. K.; Chan, C. Y.; Lee, K. I.; Ng, P. F.; Fei, B.; Xin, J. H.; Fu, X. Super-tough and thermo-healable hydrogel – promising for shape-memory absorbent fiber. Journal of Materials Chemistry B 2014, 2, 7631-7638. DOI: https://doi.org/10.1039/C4TB01289E.

Zhu, K. K.; Wang, Y.; Lu, A.; Fu, Q.; Hu, J. L.; Zhang, L. Cellulose/Chitosan Composite Multifilament Fibers with Two-Switch Shape Memory Performance. ACS Sustainable Chemistry & Engineering 2019, 7, 6981-6990. DOI: https://doi.org/10.1021/acssuschemeng.8b06691.

Zhang, Q. C.; Rudolph, T.; Benitez, A. J.; Gould, O. E. C.; Behl, M.; Kratz, K.; Lendlein, A. Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes. Smart Materials and Structures 2019, 28, 055037. DOI: https://doi.org/10.1088/1361-665X/ab10a1.

Zhang, F. H.; Zhang, Z. C.; Liu, Y. J.; Lu, H. B.; Leng, J. S. The quintuple-shape memory effect in electrospun nanofiber membranes. Smart Mater. Struct. 2013, 22, 085020. DOI: https://doi.org/10.1088/0964-1726/22/8/085020.

Feng, W.; Zhang, Y.-s.; Shao, Y.-w.; Huang, T.; Zhang, N.; Yang, J.-h.; Qi, X.-d.; Wang, Y. Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. European Polymer Journal 2021, 145, 110245. DOI: https://doi.org/10.1016/j.eurpolymj.2020.110245.

Zhuo, H. T.; Hu, J. L.; Chen, S. J. Study of water vapor permeability of shape memory polyurethane nanofibrous nonwovens. Textile Research Journal 2011, 81, 883-891. DOI: https://doi.org/10.1177/0040517510392469.

Dyer, P. Integration of small diameter wire form SMA for the creation of dynamic shape memory textiles. Advances in Science and Technology 2012, 80, 53-58. DOI: https://doi.org/10.4028/www.scientific.net/AST.80.53.

Chan Vili, Y. Y. F. Investigating smart textiles based on shape memory materials. Textile Research Journal 2007, 77, 290-300. DOI: https://doi.org/10.1177/0040517507078794.

Wang, L. J.; Lu, Y. H.; He, J. Z. On the effectiveness of temperature-responsive protective fabric incorporated with shape memory alloy (SMA) under radiant heat exposure. Clothing and Textiles Research Journal 2020, 38, 212-224. DOI: https://doi.org/10.1177/0887302X19892095.

Congalton, C. Shape memory alloys for use in thermally activated clothing, protection against flame and heat. Fire and Materials 1999, 23, 223-226. DOI: https://doi.org/10.1002/(SICI)1099-1018(199909/10)23:5<223::AID-FAM687>3.0.CO;2-K.

Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Huang, Y.; Zhi, C. Y. A shape memory supercapacitor and its application in smart energy storage textiles. Journal of Materials Chemistry A 2016, 4, 1290-1297. DOI: https://doi.org/10.1039/C5TA09473A.

Winchester, R. C. C.; Stylios, G. K. Designing knitted apparel by engineering the attributes of shape memory alloy. International Journal of Clothing Science and Technology 2003, 15, 359-366. DOI: https://doi.org/10.1108/09556220310492624.

Cabral, I.; Souto, A. P.; Carvalho, H.; Cunha, J. Exploring geometric morphology in shape memory textiles: design of dynamic light filters. Textile Research Journal 2015, 85, 1919-1933. DOI: https://doi.org/10.1177/0040517515578328.

Liu, Y.; Zhang, W.; Zhang, F. h:; Land, X.; Leng, J. S.; Liu, S.; Jia, X. Q.; Cotton, C.; Sun, B. Z.; Gu, B. H.; Chou, T.-W. Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading. Composites Part B: Engineering 2018, 153, 233-242. DOI: https://doi.org/10.1016/j.compositesb.2018.07.053.

Salej Lah, A.; Fajfar, P.; Lavric, Z.; Bukosek, V.; Rijavec, T. Preparation of shape memory NiTiNOL filaments for smart textiles. Tekstilec 2016, 59, 168-174. DOI: https://doi.org/10.14502/Tekstilec2016.59.168-174.

Weinberg, C. A.; Cai, S.; Schaffer, J.; Abel, J. Multifunctional spun yarns and textiles from nickel-titanium microfilaments. Advanced Materials Technologies 2020, 5, 1901146. DOI: https://doi.org/10.1002/admt.201901146.

Helps, T.; Vivek, A.; Rossiter, J. Characterization and Lubrication of Tube-Guided Shape-Memory Alloy Actuators for Smart Textiles. Robotics 2019, 8, 94. DOI: https://doi.org/10.3390/robotics8040094.

Vasile, S.; Grabowska, K. E.; Ciesielska-Wróbel, I. L.; Githaiga, J. Analysis of hybrid woven fabrics with shape memory alloys wires embedded. FIBRES & TEXTILES in Eastern Europe 2010, 18, 64-69.

Vasile, S.; Githaiga, J.; Ciesielska-Wróbel, I. L. Comparative analysis of the mechanical properties of hybrid yarns with superelastic shape memory alloys (SMA) wires embedded. FIBRES & TEXTILES in Eastern Europe 2011, 19, 41-46.

Vasile, S.; Ciesielska-Wróbel, I. L.; van Langenhove, L. Wrinkle recovery of flax fabrics with embedded superelastic shape memory alloys wires. FIBRES & TEXTILES in Eastern Europe 2012, 20, 56-61.

Holschuh, B.; Newman, D. Two-spring model for active compression textiles with integrated NiTi coil actuators. Smart Materials and Structures 2015, 24, 035011. DOI: https://doi.org/10.1088/0964-1726/24/3/035011.

Leist, S. K.; Gao, D. J.; Chiou, R.; Zhou, J. Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual and Physical Prototyping 2017, 12, 290-300. DOI: https://doi.org/10.1080/17452759.2017.1341815.

Khan, Md. K. R.; Hassan, Md. N. Understanding the concept of 4D textiles. South Asian Research Journal of Engineering and Technology 2021, 3, 93-95. DOI: https://doi.org/10.36346/sarjet.2021.v03i03.005.

Zhang, W.; Zhang, F. H.; Lan, X.; Leng, J. S.; Wu, A. S.; Bryson, T. M.; Cotton, C.; Gu, B. H.; Sun, B. Z.; Chou, T.-W. Shape memory behavior and recovery force of 4D printed textile functional composites. Composites Science and Technology 2018, 160, 224-230. DOI: https://doi.org/10.1016/j.compscitech.2018.03.037.

Wang, Q. R.; Tian, X. Y.; Huang, L.; Li, D. C.; Malakhov, A. V.; Polilov, A. N. Programmable morphing composites with embedded continuous fibers by 4D printing. Materials & Design 2018, 155, 404-413. DOI: https://doi.org/10.1016/j.matdes.2018.06.027.

Schmelzeisen, D.; Koch, H.; Pastore, C.; Gries, T. 4D textiles: hybrid textile structures that can change structural form with time by 3D printing. In: Kyosev, Y.; Mahltig, B.; Schwarz-Pfeiffer, A. (eds.) Narrow and Smart Textiles, 2018, 189-201. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-69050-6_17.

Koch, H. C.; Schmelzeisen, D.; Gries, T. 4D textiles made by additive manufacturing on pre-stressed textiles – an overview. Actuators 2021, 10, 31. DOI: https://doi.org/10.3390/act10020031.

Stapleton, S. E.; Kaufmann, D.; Krieger, H.; Schenk, J.; Gries, T.; Schmelzeisen, D. Finite element modeling to predict the steady-state structural behavior of 4D textiles. Textile Research Journal 2019, 89, 3484-3498. DOI: https://doi.org/10.1177/0040517518811948.

Liem, H.; Yeung, L. Y.; Hu, J. L. A prerequisite for the effective transfer of the shape-memory effect to cotton fibers. Smart Materials and Structures 2007, 16, 748. DOI: https://doi.org/10.1088/0964-1726/16/3/023.

Liu, X. X.; Hu, J. L.; Babu, K. M.; Wang, S. Y. Elasticity and Shape Memory Effect of Shape Memory Fabrics. Textile Research Journal 2008, 78, 1048-1056. DOI: https://doi.org/10.1177/0040517508087854.

Jahid, Md. A.; Hu, J. L.; Wong, K. H.; Wu, Y.; Zhu, Y.; Luo, H. H. S.; Zhongmin, D. Fabric coated with shape memory polyurethane and its properties. Polymers 2018, 10, 681. DOI: https://doi.org/10.3390/polym10060681.

Mondal, S.; Hu, J. L. Water vapor permeability of cotton fabrics coated with shape memory polyurethane. Carbohydrate Polymers 2007, 67, 282-287. DOI: https://doi.org/10.1016/j.carbpol.2006.05.030.

Korkmaz Memis, N.; Kaplan, S. Smart polyester fabric with comfort regulation by temperature and moisture responsive shape memory nanocomposite treatment. Journal of Industrial Textiles 2020, online first. DOI: https://doi.org/10.1177/1528083720975652

Hits in the Web of Science for chosen search phrases. Data taken on November 21, 2021

Published

2021-12-16

How to Cite

Ehrmann, G., & Ehrmann, A. (2021). Shape memory textiles – technological background and possible applications. Communications in Development and Assembling of Textile Products, 2(2), 162-172. https://doi.org/10.25367/cdatp.2021.2.p162-172

Issue

Section

Peer-reviewed articles