Reduction of radiation transmission through functionalization of textiles from man-made cellulosic fibers


  • Kristina Klinkhammer Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
  • Karin Ratovo Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
  • Oliver Heß Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
  • Ellen Bendt Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
  • Thomas Grethe Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
  • Marcus Krieg TITK, Thuringian Institute for Textile and Plastics Research Rudolstadt, Rudolstadt, German
  • Michael Sturm TITK, Thuringian Institute for Textile and Plastics Research Rudolstadt, Rudolstadt, German
  • Thomas Weide Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
  • Boris Mahltig Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Mönchengladbach, Germany



Lyocell, UV-protection, IR-protection, Radiation protection, Skin care, TiO2, Indathren dye, Perylene dye, functionalization


Both ultraviolet (UV) and infrared (IR) light have negative impact on the human health. With this background it is the main aim of the current research to realize a textile material which is able to protect against both UV light and IR light. For this research, regenerated cellulosic fibers from the Lyocell process are used and modified. Main analytical investigations are done by photo-spectroscopy in arrangement of diffuse transmission for the spectral range from 220 nm to 1400 nm. Additionally, microscopic investigations are done by scanning electron microscopy (SEM). For material development, Lyocell fibers functionalized with TiO2 particles are first processed into yarns and then into knitted fabrics. Compared to non-functionalized textiles, the transmission is reduced in the UV range due to the absorption behavior of TiO2. Subsequent dyeing with anthraquinone or reactive dyes enhanced the UV protective effect. To reduce the transmission in the near IR range (NIR), non-functionalized Lyocell knitted fabrics are functionalized with various IR absorbers in different concen­trations. With increasing concentration, the transmission de­creased. However, a grey coloration of the textile is observed simultaneously, with increased concentration. This must be con­sidered in further processing steps. With these methods for function­alization, it is possible to produce textiles that offer increased protection against UV and IR radiation. These are promising materials for the production of clothing or work wear.


Tarbuk, A.; Grancaric, A. M.; Situm, M. Skin cancer and UV protection. AUTEX Res. J. 2016, 16, 19-28. DOI: 10.1515/aut-2015-0050.

Mang, R.; Krutmann, J. Sonnenschutz im Urlaub. Hautarzt 2003, 54, 498-505.

Burke, K. E.; Wie, H. Synergistic damage by UVA radiation and pollutants. Toxicology and Industrial Health 2009, 25, 219-224.

McDaniel, D.; Farris, P.; Valacchi, G. Atmospheric skin aging – contributors and inhibitors. Journal of Cosmetic Dermatology 2018, 17, 124-137.

Schröder, P.; Krutmann, J. IRA protection – needs and possibilities. Hautarzt 2009, 60, 301-304. DOI: 10.1007/s00105-008-1626-8.

Hudson, L.; Rashdan, E.; Bonn, C. A.; Chavan, B.; Rawlings, D.; Birch-Machin, M. A. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. The FASEB Journal 2020, 34, 3874-3883. DOI: 10.1096/fj.201902351RR.

Odinokov, D.; Hamblin, M.R. Aging of lymphoid organs: Can photobiomodulation reverse age-associated thymic involution via stimulation of extrapineal melatonin synthesis and bone marrow stem cells? J. Biophotonics 2018, 11, e201700282. DOI: 10.1002/jbio.201700282.

Slominski, A.T.; Zmijewski, M.A.; Semak, I.; Kim, T.K.; Janjetovic, Z.; Slominski, R.M.; Zmijewski, J.W. Melatonin, mitochondria, and the skin. Cell Mol. Life Sci. 2017, 74, 3913-3925. DOI: 10.1007/s00018-017-2617-7.

Kim, S.J.; Bae, J.; Lee, S.E.; Lee, J.B.; Park, C.H.; Lim, D.H.; Park, M.S., Ha, J. A novel in vivo test method for evaluating the infrared radiation protection provided by sunscreen products. Skin Research and Technology 2019, 25, 890-895. DOI: 10.1111/srt.12754.

Grether-Beck, S.; Marini, A.; Jaenicke, T.; Krutmann, J. Photoprotection of human skin beyond ultraviolet radiation. Photodermatology, Photoimmunology & Photomedicine 2014, 30, 167-174. DOI: 10.1111/phpp.12111.

Ngoc, L.T.N.; Tran, V.V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics 2019, 6, 1-15. DOI: 10.3390/cosmetics6040064.

Bajaj, P.; Kothari, V. K.; Ghosh, S. B. Some innovations in UV protective clothing. Indian Journal of Fibre & Textile Research 2000, 25, 315-329.

Saravanan, D. UV protection textile materials. AUTEX Res. J. 2007, 7, 53-62.

Mavric, Z.; Tomsic, B.; Simoncic, B. Recent Advances in the Ultraviolet Protection Finishing of Textiles. Tekstilec 2018, 61, 201-220, DOI: 10.14502/Tekstilec2018.61.201-220.

Kocic, A.; Bizjak, M.; Popovic, D.; Goran B. Poparic, G. B.; Snezana B. Stankovic, S. B. 2019. UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres. Journal of Cleaner Production 2019, 228, 1229-1237. DOI: 10.1016/j.jclepro.2019.04.355.

Mahltig, B. Fibers for radiation protection, book chapter. In: Handbook for Fibrous Materials Vol 2; Hu, J.; Kumar, B.; Lu, J., Eds.; Wiley-VCH Verlag GmbH, Weinheim, Germany, 2020; pp. 889-926. DOI: 10.1002/9783527342587.ch32.

Alebeid, O.K.; Zhao, T. Review on: developing UV protection for cotton fabric. The Journal of the Textile Institute 2017, 108, 2027-2039. DOI: 10.1080/00405000.2017.1311201.

Verbic, A.; Gorjanc, M.; Simoncic, B. Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings 2019, 9, 1-26. DOI: 10.3390/coatings9090550.

K. Sarkar, A. K.; Vora, G. Imparting protective properties to Lyocell via finishing treatments. AUTEX Res. J. 2011, 11, 89-92.

Hoque, M. T.; Mahltig, B. Realisation of polyester fabrics with low transmission for ultraviolet light. Coloration Technol. 2020, 136, 346-355. DOI: 10.1111/cote.12470.

Mahltig, B.; Textor, T. Nanosols and Textiles; World Scientific, Singapore, 2008.

Mahltig, B.; Böttcher, H.; Rauch, K.; Dieckmann, U.; Nitsche, R.; Fritz, T. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films 2005, 485, 108-114. DOI: 10.1016/j.tsf.2005.03.056.

Kim, Y. K. Ultraviolet protection finishes for textiles, book chapter. In: Functional Finishes for Textiles; Paul, R., Ed.; Woodhead Publishing, Cambridge, UK, 2015; pp. 463-486.

Rauch, K.; Dieckmann, U.; Böttcher, H.; Mahltig, B. UV-protected transparent coating, useful for technical applications and to prepare e.g. UV-protecting glasses, comprises UV-absorbing materials and transparent UV protecting layer that develops after drying on material, DE102004027075A1, 2004.

Olczyk, J.; Sojka-Ledakowicz, J.; Kudzin, M.; Antecka, A. The eco-modification of textiles using enzymatic pretreatment and new organic UV absorbers. AUTEX Res. J. 2021, 21, 242-251. DOI 10.2478/aut-2019-0081.

Bekrani, M.; Zohoori, S.; Davodiroknabadi, A. Producing multifunctional cotton fabrics using nano CeO2 doped with nano TiO2 and ZnO. AUTEX Res. J. 2020, 20, 78-84.

Tsuzuki, T.; Wang, X. Nanoparticle Coatings for UV Protective Textiles. Research Journal of Textile and Apparel 2010, 14, 9-20. DOI: 10.1108/RJTA-14-02-2010-B002.

Hossain, M.A.; Rahman, M. A Review of Nano Particle Usage on Textile Material against Ultra Violet Radiation. Journal of Textile Science and Technology 2015, 1, 93-100. DOI: 10.4236/jtst.2015.13010.

Mahltig, B. Cellulosic based composite fibers. In: Inorganic and Composite Fibers; Mahltig, B.; Kyosev, Y., Eds.; Elsevier, Cambridge, UK, 2018; pp. 277-301. DOI: 10.1016/B978-0-08-102228-3.00013-X.

Jimenez Reinoza, J.; Alvarez Docio, C. M.; Zapata Ramirez, V.; Francisco, J., Lozano, F. Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens. Ceramics International 2018, 44, 2827-2834. DOI: 10.1016/j.ceramint.2017.11.028.

Zhang, M.; Xie, W.; Tang, B.; Sun, L.; Wang, X. Synthesis of TiO2 & SiO2 nanoparticles as efficient UV absorbers and their application on wool. Textile Res. J. 2017, 87, 1784-1792. DOI: 10.1177/0040517516659375.

Cuk, N.; Gorjanc, M. Natural Dyeing and UV Protection of Raw and Bleached/Mercerised Cotton. Tekstilec 2017, 60, 126-136. DOI: 10.14502/Tekstilec2017.60.126-136.

Baaka, N.; Ticha, M. B.; Haddar, W.; Pessoa Amorium, M. T.; Mhenni, M. F. Upgrading of UV Protection Properties of Several Textile Fabrics by Their Dyeing with Grape Pomace Colorants. Fibers and Polymers 2018, 19, 307-312. DOI: 10.1007/s12221-018-7327-0.

Hou, X.; Chen, X.; Cheng, Y.; Xu, H.; Chen, L.; Yang, Y. Dyeing and UV-protection properties of water extracts from orange peel. Journal of Cleaner Production 2013, 52, 410-419. DOI: 10.1016/j.jclepro.2013.03.004.

Grifoni, D.; Bacci, L.; Zipoli, G.; Albanese, L.; Sabatini, F. The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes and Pigments 2011, 91, 279-285. DOI: 10.1016/j.dyepig.2011.04.006.

Alebeid, O.K., Tao, Z.; Seedamed, A.I. New Approach for Dyeing and UV Protection Properties of Cotton Fabric Using Natural Dye Extracted from Henna Leaves. Fibres & Textiles in Eastern Europe 2015, 23, 60-65. DOI: 10.5604/12303666.1161758.

Srinivasan, M.; Gatewood, B.M. Relationship of Dye Characteristics to UV Protection Provided by Cotton Fabric. Textile Chemist & Colorist & American Dyestuff Reporter 2000, 32, 36-43.

Shabbir, G.; Haase, H.; Mahltig, B. Double functional finishing for textile fabrics: A combination of UV-protective and antimicrobial properties. Book chapter. In: Textiles: Advances in Research and Applications; Mahltig, B., Ed.; Nova Science Publishers Inc., New York, USA, 2018; pp. 183-199.

Mahltig, B.; Zhang, J.; Wu, L.; Darko, D.; Wendt, M.; Lempa, E.; Rabe, M.; Haase, H. Effect pigments for textile coating: a review of the broad range of advantageous functionalization. J. Coat. Technol. Res. 2017, 14, 35-55. DOI: 10.1007/s11998-016-9854-9.

Ruffen, C.; Mahltig, B. Basalt fibers as functional additives in coating of textiles. J. Coat. Technol. Res. 2021, 18, 271-281. DOI: 10.1007/s11998-020-00383-8.

Greiler, L. C.; Mahltig, B. Pearlescent Effect Pigments for Coatings on Textiles – Part I: Protective Materials Against UV Light and IR Light. World Journal of Textile Engineering and Technology 2021, 7, 112-121.

Zhang, J.; Mahltig, B. Coatings with metal effect pigments for textile functionalization to realize UV and IR protective applications. In: Textiles: Advances in Research and Applications; Mahltig, B., Ed.; Nova Science Publishers Inc., New York, USA, 2018; pp. 151-166.

Mahltig, B.; Bendt, E.; Grethe, T.; Hess, O.; Weide, T.; Krieg, M. Biophysical concept for textile skin protection. Melliand International 2021, 26, 138-140.

Mahltig, B.; Günther, K.; Askani, A.; Bohnet, F.; Brinkert, N.; Kyosev, Y.; Weide, T.; Krieg, M.; Leisegang, T. X-ray-protective organic/inorganic fiber – along the textile chain from fiber production to clothing application. The Journal of the Textile Institute 2017, 108, 1975-1984. DOI: 10.1080/00405000.2017.1303122.

Günther, K.; Giebing, C.; Askani, A.; Leisegang, T.; Krieg, M.; Kyosev, Y.; Weide, T.; Mahltig, B. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties. Mater. Chem. Phys. 2015, 167, 125-135. DOI: 10.1016/j.matchemphys.2015.10.019.

Mahltig, B.; Günther, K.; Giebing, C.; Kyosev, Y.; Weide, T.; Gersching, D.; Krieg, M. Anorganische/organische Kompositfasern zur Abschirmung von Röntgenstrahlung. Chemie Ingenieur Technik 2014, 86, 1555-1556. DOI: 10.1002/cite.201450232.

Christie, R. M. Colour Chemistry; The Royal Society of Chemistry, Cambridge, 2001.

Seilnacht, T. Pigmente und Bindemittel; Seilnacht Verlag & Atelier, Bern, 2018.

Colliex, C.; Kohl, H. Elektronenmikroskopie; Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 2007.

Mahltig, B.; Grethe, T. High-Performance and Functional Fiber Materials — A Review of Properties, Scanning Electron Microscopy SEM and Electron Dispersive Spectroscopy EDS. Textiles 2022, 2, 209-251. DOI: 10.3390/textiles2020012.

Mahltig, B.; Textor, T.; Akcakoca Kumbasar, P. Photobactericidal and photochromic textile materials realized by embedding of advantageous dye using sol-gel technology. Celal Bayar University Journal of Science 2015, 11, 306-315. DOI: 10.18466/cbujos.44647.

Zhang, H.; Zhang, C. Near-infrared green camouflage of cotton fabrics using vat dyes. The Journal of the Textile Institute 2008, 99, 83-88. DOI: 10.1080/00405000701556392.

Gupta, K. K.; Nishkam, A.; Kasturiya, N. Camouflage in the Non-Visible Region. J. Ind. Text. 2001, 31, 27-42. DOI: 10.1106/LMQ5-X8LK-27RJ-URPL.

Rubeziene, V.; Padleckiene, I.; Baltusnikaite, J.; Varnaite, S. Evaluation of Camouflage Effectiveness of Printed Fabrics in the Visible and Near Infrared Radiation Spectral Ranges. Materials Science 2008, 14, 361-365.

Goudarzi, U.; Mokhtari, J.; Nouri, M. Camouflage of Cotton Fabrics in Visible and NIR Region Using Three Selected Vat Dyes. Color Research & Application 2014, 39, 200-207. DOI: 10.1002/col.21778.

Narsaria, A. K.; Poater, J.; Fonseca Guerra, C.; Ehlers, A. W.; Lammertsma, K.; Bickelhaupt, F. M. Rational design of near-infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory. J. Comput. Chem. 2018, 39, 2690-2696. DOI: 10.1002/jcc.25731.

Ferreira, J.; Serra, V.; Sánchez-Coronilla, A.; Pires, S.; Faustino, M.; Silva, A.; Neves, M.; Cavaleiro, J.; Costa, S. The near-mid-IR HOMO-LUMO gap in amide linked porphyrin-rhodamine dyads. Chemical Communications 2013, 49, 8809-8811. DOI: 10.1039/C3CC44925D.

Mahltig, B.; Leisegang, T.; Jakubik, M.; Haufe, H. Hybrid sol-gel materials for realization of radiation protective coatings – a review with emphasis on UV protective materials. J. Sol-Gel Sci. Technol. 2022, in press. DOI: 10.1007/s10971-021-05558-2.

Böttcher, H.; Mahltig, B.; Haufe, H.; Henker, P. UV light absorbing material, useful e.g. as coating for glass, wood and organic polymer substrates, comprises a silica-matrix and covalently bound acrylamide residues, DE102006002231A1, 2006.

Mahltig, B.; Textor, T. Nanocoatings by sol-gel processes for functionalization of polymer surfaces and textiles. In: Handbook of Modern Coating Technologies – Fabrication Methods and Functional Properties; Aliofkhazraei, M.; Nasar, A.; Chipara, M.; Laidani, N.B.; De Hosson, J.T.M., Eds.; Elsevier, Amsterdam, Netherlands, 2021; pp. 1-23.

Li, C.; Li, Z.; Ren, X. Preparation and characterization of polyester fabrics coated with TiO2/Benzotriazole for UV protection. Colloids and Surfaces A 2019, 577, 695-701. DOI: 10.1016/j.colsurfa.2019.06.030.

Liu, Y.; Lin, J.; Tan, H.; Zhang, C. UV-protective treatment for Vectran® fibers with hybrid coatings of TiO2/organic UV absorbers. Journal of Adhesion Science and Technology 2014, 28, 1773-1782. DOI: 10.1080/01694243.2014.921130.

El-Ola, S.M.A.; Kotb, R.M. Functional versatility of hybrid composite finishing of chitosan-titania NPs-organic UV-absorber for polyacrylonitrile fabric. Journal of Engineered Fibers and Fabrics 2021, 16, 1-16. DOI: 10.1177/15589250211064845.

SEM image of Lyocell fibers containing titanium dioxide TiO2 particles.



How to Cite

Klinkhammer, K., Ratovo, K., Heß, O., Bendt, E., Grethe, T., Krieg, M., Sturm, M., Weide, T., & Mahltig, B. (2022). Reduction of radiation transmission through functionalization of textiles from man-made cellulosic fibers. Communications in Development and Assembling of Textile Products, 3(1), 51-61.



Peer-reviewed articles