Influence of polyester fabric with infrared emissive additives on cell metabolism




cell study, functional fabric, inorganic addiitves, methabolism


Functional fabrics with effects of influencing the metabolism and energy supplying are of great interest and may extensively be applied in wellness and sport apparel. In this work, three different combinations of additives such as silicon oxide doped with 10% of iron oxide III, 10% of graphene and 10% calcium hydroxyapatite were prepared, each combination was compounded separately with polyester, and pellets were extruded with additive weight around 4%. Melt spun multifilament yarns (130D/48f) were produced from the prepared pellets. Further, three knitted fabrics from a yarn with additives and one control fabric from the yarn without additives were developed for comparison and analysis. Infrared emissivity test result showed that fabrics with functional additives have significantly higher effective emissivity (0.997 to 1.006) than the reference fabric (0.909) for wavelength 5-14 µm. Moreover, spectral emissivity of fabrics with additives are relatively high at peak human IR emission wavelength (8-14 µm). As a key signal molecule that is involved in certain physiological pathways, nitric oxide (NO) generation was assessed by co-culturing with human skeletal muscle cells (HMSCs). It is observed that selected additives in the fabric lead to 15%-40% increase of nitrite levels in muscle cells after 24 and 72 hours of exposure and the best among them were graphene containing additives. Besides, it is also discovered that additives in the fabric increase mitochondrial biogenesis, which is proved by the increase of mitochondrial copy number by a factor of 1.25. The mitochondrial biogenesis may be a possible pathway activated by nitric oxide and potentially accelerate the energy expenditure. The observations in the cell study indicated the potential biological effects of the fabric with selected functional additives.


Persistence Market Research. (accessed 2022-04-05)

Dyer, J. Infrared functional textiles. In Functional textiles for improved performance, protection and health; Pan Sun N.G., Ed. Woodhead Publishing, 2011, pp. 184-197.

Silva, T.; Moreira, G.; Quadros, abrahão; Pradella-Hallinan, M.; Tufik, S.; Oliveira, A. Effects of the Use of MIG3 Bioceramics Fabrics Use – Long Infrared Emitter – in Pain, Intolerance to Cold and Periodic Limb Movements in Post-Polio Syndrome. Arq. Neuropsiquiatr. 2009, 67, 1049-1053. DOI: 10.1590/S0004-282X2009000600016.

Luis Augusto, C.; Munin, E. Reduction in Body Measurements after Use of a Garment Made with Synthetic Fibers Embedded with Ceramic Nanoparticles. J. Cosmet. Dermatol. 2011, 10, 30-35. DOI: 10.1111/j.1473-2165.2010.00537.x.

Leung, T. K.; Chen, C. H.; Tsai, S.Y.; Hsiao, G.; Lee, C. M. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility. Chin J Physiol. 2012, 55(5), 323-330. DOI: 10.4077/CJP.2012.BAA037.

Martínez Nova, A.; Marcos-Tejedor, F.; Gómez Martín, B.; Sánchez-Rodríguez, R.; Escamilla-Martínez, E. Bioceramic fiber socks have more benefits than cotton-made socks in controlling bacterial load and the increase of sweat in runners. Text. Res. J. 2017, 88(6), 696-703. DOI: 10.1177/0040517516688631.

Faisal, A. M.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, Y.; Wang, L. Far-infrared emission properties and thermogravimetric analysis of ceramic-embedded polyurethane films. Polymers 2021, 13, 686. DOI: 10.3390/polym13050686.

Worobets, J.; Skolnik, E.; Stefanyshyn, D. Apparel with far infrared radiation for decreasing an athlete’s oxygen consumption during submaximal exercise. Res. J. Text. Appar. 2015, 19, 52-57. DOI: 10.1108/RJTA-19-03-2015-B007.

Luis Augusto, C.; Munin, E. Reductions in body measurements promoted by a garment containing ceramic nanoparticles: a 4-month follow-up study. J. Cosmet. Dermatol. 2013, 12, 18-24. DOI: 10.1111/jocd.12027.

Bontemps, B.; Gruet, M.; Vercruyssen, F.; Louis, J. Utilisation of far infrared-emitting garments for optimising performance and recovery in sport: Real potential or new fad? A systematic review. PLoS ONE. 2021, 16(5), e0251282. DOI: 10.1371/journal.pone.0251282

Loturco, I.; Abad, C.; Nakamura, F. Y.; Ramos, S. P.; Kobal, R.; Gil, S.; Pereira, L. A.; Burini, F.; Roschel, H.; Ugrinowitsch, C.; Tricoli, V. Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: a randomized double-blind placebo-controlled trial. Biol. Sport 2016, 33(3), 277-283. DOI: 10.5604/20831862.1208479.

Ke, Y. M.; Ou, M.-C.; Ho, C.-K.; yung-sheng, L.; Liu, H.-Y.; Kan, N.-W. Effects of somatothermal far-infrared ray on primary dysmenorrhea: a pilot study. Evid. Based. Complement. Alternat. Med. 2012, 2012, 240314. DOI: 10.1155/2012/240314.

Nunes, R.; Cidral-Filho, F.; Flores, L.; Nakamura, F.; Rodriguez, H.; Bobinski, F.; Sousa, A.; Petronilho, F.; Gainski Danielski, L.; Martins, M.; Martins, D.; Guglielmo, L. G. Effects of far-infrared emitting ceramic materials on recovery during 2-week preseason of elite futsal players. J. Strength Cond. Res. 2020, 34, 235-248. DOI: 10.1519/JSC.0000000000002733.

Molina, J. Graphene-based fabrics and their applications: a review. RSC Adv. 2016, 6(72), 68261-68291. DOI: 10.1039/C6RA12365A.

Yu, T.; Hu, Y.; Feng, G.; Hu, K. A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv. Ther. 2020, 3(3), 1900195. DOI: 10.1002/adtp.201900195

Hsu, Y. H.; Chen, Y. C.; Chen, T. H.; Sue, Y. M.; Cheng, T. H.; Chen, J. R.; Chen, C. H. Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells. PLoS One. 2012, 7, e30674. DOI: 10.1371/journal.pone.0030674.

Park, J.-H.; Lee, S.; Cho, D.-H.; Kang, D.-H.; Jo, I. Far-Infrared Radiation Acutely Increases Nitric Oxide Production by Increasing Ca2+ Mobilization and Ca2+/Calmodulin-Dependent Protein Kinase II-Mediated Phosphorylation of Endothelial Nitric Oxide Synthase at Serine 1179. Biochem. Biophys. Res. Commun. 2013, 436, 601-606. DOI: 10.1016/j.bbrc.2013.06.003.

de Oliveira, A. S.; Sacoman Torquato da Silva, B. H.; Goes, M. S.; Cuin, A.; de Souza, H.; Cappa de Oliveira, L. F.; de Souza, G. P.; Schiavon, M. A.; Ferrari, J. L. Photoluminescence, Thermal stability and structural properties of Eu3+, Dy3+ and Eu3+/Dy3+ doped apatite-type silicates. J. Lumin. 2020, 227, 117500. DOI: 10.1016/j.jlumin.2020.

Cui, S.; Chen, G. Investigation of photoluminescence properties, quenching mechanism and thermal Stability of the red-emitting phosphor based on Eu ions doped apatite host NaLa9(SiO4)6O2. Mater. Res. Express 2019, 6(9), 096201. DOI: 10.1088/2053-1591/ab2cfa.

Aksimentyeva, О. І.; Chepikov, I. B.; Filipsonov, R. V; Malynych, S. Z.; Gamernyk, R. V; Martyniuk, G. V; Horbenko, Y. Y. Hybrid composites with low reflection of IR radiation. Phys. Chem. Solid State. 2020, 21(4), 764-770. DOI: 10.15330/pcss.21.4.764-770.

Yu, W. L.; Wang, Z.; Jin, L. The experiment study on infrared radiation spectrum of human body. In Proceedings of IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China, 5-7 January 2012, pp. 752-754.

Shun, A.; Wen, S.; Modi, J.; Yini, L.; Benwei, F.; Chengyi, S.; Peng, T.; Tao, D. Human hand as a powerless and multiplexed infrared light source for information decryption and complex signal generation. Proc. Natl. Acad. Sci. 2021, 118(15), e2021077118. DOI: 10.1073/pnas.2021077118.

York, R.; Gordon, I. Effect of optically modified polyethylene terephthalate fiber socks on chronic foot pain. BMC complement. Altern. Med. 2009, 9, 10. DOI: 10.1186/1472-6882-9-10.

Ko G. D.; Berbrayer D. Effect of ceramic-impregnated “thermoflow” gloves on patients with Raynaud’s syndrome: randomized, placebo-controlled study. Altern. Med. Rev. 2002, 7(4), 328-35. PMID: 12197784.

Leung, T.; Lee, C. M.; Lin, M. Y.; Ho, Y. S.; Chen, C. S.; Wu, C. H.; Lin, Y. S. Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells. J. Med. Biol. Eng. 2009, 29, 15-18.

Leung, T.; yung-sheng, L.; Chen, Y.-C.; Shang, H.-F.; Lee, Y.-H.; Su, C.-H.; Liao, H.-C.; Chang, T.-M. Immunomodulatory effects of far-infrared ray irradiation via increasing calmodulin and nitric oxide production in raw 264.7 macrophages. Biomed. Eng. – Appl. Basis Commun. 2009, 21(5), 317-323. DOI: 10.4015/S1016237209001404.

Zhang, L.; Chan, P.; Liu, Z.-M.; Hwang, L.-L.; Lin, K.-C.; Chan, W.; Leung, T.; Choy, C.-S. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats. Evidence-Based Complement. Altern. Med. 2016, 2016, 7230962. DOI: 10.1155/2016/7230962.

Enzo, N.; Emilio, C.; Clara, P.; Valeria, C.; Cristina, T.; Clara, S.; Renata, B.; Alessandra, V.; Maura, F.; Salvador, M.; O, C. M. Mitochondrial Biogenesis in Mammals: The Role of Endogenous Nitric Oxide. Science 2003, 299(5608), 896-899. DOI: 10.1126/science.1079368.

Miyamoto, T.; Petrus, M. J.; Dubin, A. E.; Patapoutian, A. TRPV3 Regulates Nitric Oxide Synthase-Independent Nitric Oxide Synthesis in the Skin. Nat. Commun. 2011, 2(1), 369-380. DOI: 10.1038/ncomms1371.

Gordon, I.; Casden, S.; Hamblin, M. Effect of Celliant® Armbands on Grip Strength in Subjects with Chronic Wrist and Elbow Pain: Randomized Double-Blind Placebo-Controlled Trial. Res. J. Text. Appar. 2021, ahead-of-print. DOI: 10.1108/RJTA-03-2021-0032.

Nohl, H.; Staniek, K.; Kozlov, A. The Existence and Significance of a Mitochondrial Nitrite Reductase. Redox Rep. 2005, 10, 281-286. DOI: 10.1179/135100005X83707.

Bryan, N. S.; Fernandez, B. O.; Bauer, S. M.; Garcia-Saura, M. F.; Milsom, A. B.; Rassaf, T.; Maloney, R. E.; Bharti, A.; Rodriguez, J.; Feelisch, M. Nitrite Is a Signaling Molecule and Regulator of Gene Expression in Mammalian Tissues. Nat. Chem. Biol. 2005, 1(5), 290-297. DOI: 10.1038/nchembio734.

Transmittance of three additives in wavelength from 2-16 micrometer



How to Cite

Peng Fei, H. ., Arumugam, V. ., Góra, A. ., & Lipik, V. (2022). Influence of polyester fabric with infrared emissive additives on cell metabolism. Communications in Development and Assembling of Textile Products, 3(2), 104-114.



Peer-reviewed articles