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Abstract 

The correct prediction of sub sequential port-to-port routes plays an integral part in maritime logistics and is therefore  
essential for many further tasks like accurate predictions of the estimated time of arrival. In this paper we present a 

scalable AI-based approach to predict upcoming port destinations from vessels based on historical AIS data. The presented 

method is mainly intended as a fill in for cases where the AIS destination entry of a vessel is not interpretable. We describe 

how one can build a stable and efficient in-database AI solution built on Markov models that are suited for massively 

parallel prediction tasks with high accuracy. The presented research is part of the PRESEA project (“Real-time based 

maritime traffic forecast”). 
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1. Introduction and Motivation 

 

According to the UN more than 80% of the worlds 

merchandise trade has been carried by sea in 2019 [1]. 

This shows the integral part maritime logistics plays in 

world economics and motivates the continuous pursuit for 

logistical   optimization. 

The project PRESEA ("Real-time based maritime traffic  

forecast") aims to support this cause by developing a real- 

time based forecast for global maritime traffic that will be  

integrated as a service in FleetMons infrastructure [2]. In  

particular, a routing network is developed that is intended  

to incorporate weather conditions and specific events like  

ships accidents. The corresponding forecast system will  

allow shipping companies to optimize their organization of  

just in time delivery, which will also optimize the fuel  

demand of specific vessels which can ultimately reduce the  

emissions of the respective ships. Furthermore, maritime 

security authorities can easily obtain detailed information 

on  expected  traffic  volumes. 

Project partner in PRESEA is the Institute for Safety 

Engineering / Ship Safety e.V. (ISV) located in Warnemünde 

(Germany). The Laeisz shipping company, Synfioo GmbH, 

the classification society DNV-GL and Daimler AG have 

pledged their active support for this project. 

In this paper we present an approach that improved one  

basic  but  key  aspect  of  this  forecast  system  using  AI  

technology:   the   accurate   prediction   of   next   port  

destinations   or   even   whole   subsequent   port-to-port- 

routes. Currently, FleetMons port destination prediction is 

___________________________________ 
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based on   the   interpretation   of   AIS  (“Automatic 

Identification System”) data sent from vessels and their 

last identified  visited  port. 

As will be described in detail in Section II this approach 

harbors several challenges that are unlikely to be solved 

with logical approaches thus motivating a (statistical) 

AI based approach. 

The rest of the paper is structured as follows. In the 

following Section III a short summarization of the state of 

the art is presented. In Section IV the use of Markov 

processes is motivated and discussed for the presented 

context. An evaluation of the derived models are presented 

in the following Section V. Finally, a short description of 

future   projects   and   possible   improvements   of   the 

presented work is given in Section VI. 
 

2. AIS Data and Interpretation Challenges 

 

Firstly, we would like to discuss the downsides of deriving 

the port destination from AIS data and motivate the partial 

use of AI in order to overcome problem cases. Therefore 

we give a small overview on the Automatic Identification 

System and challenges we have faced at inferring port 

destinations from its data 

 

A. The Automatic Identification System (AIS). 

 

Currently, the main basis for the prediction of a vessels  

port destination is data the respective ship sent by means  

of the AIS. AIS is now standard equipment for all ships over  

300 gross tonnes in international voyages. Via VHF, a ship  

transmits AIS data for its own identification and essential  

voyage information. The data is received from other ships  

and is integrated on board in an electronic navigational  

chart (ECDIS),  which  allows  surrounding  ships  to  be  

identified   and   thus   the   assessment   of   the   overall  

navigational situation. At the same time, AIS data can also  

be received from satellites or shore stations and can be  

merged and visualised by corresponding providers. This  

enables a worldwide display of all ship movements.  

The content of the minimum data to be transmitted is  

internationally prescribed and comprises the following  

three groups: 

• Static data: IMO number, ship name, call sign, 

 

MMSI number, type of ship, dimensions of the  

ship 

• Dynamic ship data: Navigational status, ship  

 position, me of ship position, course over 

ground, speed over ground, forward direction, 

rate of course change 

• Voyage data: current maximum static draught,  

 dangerous goods class of cargo, destination, 

estimated time, of arrival (ETA). 

 

The destination and the expected time of arrival are 

manually set by the vessels navigator which is often the 

cause of non-matchable port destinations. 

FleetMon operates one of the world's largest AIS networks  

consisting of thousands of globally distributed terrestrial  

AIS antennas as well as satellite data provided by the three  

largest AIS satellite data providers and several AIS research  

satellite   constellations.   While   receiving,   storing   and  

processing over 480 million AIS messages a day from up to  

225 thousand vessels, we need to make sure that PRESEAs  

routing system can accurately predict large parts of port  

destinations of the global fleet in order to allow precise  

traffic forecasts within the system. In the following we  

describe some challenges we have faced while interpreting  

the AIS destination data. 
 

B. Challenge in the interpretation of the AIS destination 

 

Currently, FleetMon uses a complex set of logical rules  

based on string matching that searches for identifiable  

ports in the destination entry. As vessels with fixed port-to- 

port cycles (for instances ferries) often use static entries in  

the form of “port 1 <-> port 2” we use information of the  

last known port call to identify which one of these ports is  

the actual destination. Anyhow, as any string sequence 

can be entered in the AIS destination text field, we 

faced a multitude of possible misspellings or misuse of 

the field. Trying to cope with these by mapping 

misspelled port names to the originally intended LOCODE 

turned out to be insufficient. 

Besides it cannot be guaranteed that each voyage related  

AIS data set, which is broadcast only every 6 minutes, is  

received by an AIS network. Furthermore, when not 

updated correctly it is possible that the current destination 
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entry is not matching with the real port destination. All 

these points leads to a number of challenges that have 

occurred over time. Some of them will be described now 

by way of example: 

• The ship reports "CNSHA USLAX" (for the  

 journey from Shanghai to Los Angeles). 

However, the ship does not have its last port call  

 in Shanghai, but in Hangzhou (CNHAZ). So, it is  

not possible to determine which was the last 

port and therefore which is the next port, 

considering the AIS destination 

• Due to missing AIS coverage in the port no port  

 call could be generated. Therefore, it is not 

possible to determine the last port if two  

LOCODEs   are   entered   in   the   destination. 

• Incorrectly spelled LOCODEs, for instance KRBUS 

for Busan (correct would be KRPUS) 

• Different kinds of misspelled city names like 

Philadelphia 

• Several ports in the world have the same city  

 name, for example Cartagena (Spain or 

Colombia) or Sydney (Canada or 

Australia) 

• The use of port name variations in different  

 languages, for instance: Brugge (German, 

Dutch), Bruges (English, French, Portuguese),  

Briž (Macedonian, Serbian), Bruggia (Italian),  

Bruggy (Slovak), Brugia (Polish), Brugy (Czech),  

Brujas (Spanish), Brygge (Finnish). The correct  

name for the Port is in English Zeebrugge or  

Seebrugge 

 
These examples lead to the fact that with the method used 

less  than 80%  of  the  destination  sent  in  AIS  can  be 

correctly interpreted by ships over 100m. This means that 

for more than 20% of the ships no estimated time of arrival 

in the next port can be calculated. 

With these restrictions in mind the rest of the paper is 

dedicated to present and evaluate an AI based approach to 

allow meaningful and efficiently computable predictions of 

a vessels port  destination(s)  without  relying  on  AIS 

destination   entries. 

 

3. State of the Art 

 

To the best of our knowledge there has been no work  

published for the concrete prediction of port-to-port  

routes via Markov models based on historical and current  

AIS   data. 

Contrary, indepth research has been done in the detection 

of anomalous in vessel behavior, the prediction of vessel 

routes or the prediction of the estimated time of arrival 

(ETA).  Here we would like to list a few prominent 

representatives of this work. 

In [3] an incremental statistical learning approach has been  

developed which detects anomalies and projects current  

trajectories of vessels into the future using AIS data.  

Different   Machine   Learning   techniques   have   been  

evaluated   for   ETA   predictions   in [4].  Similarly, ETA  

predictions based on historical AIS statistics have been  

evaluated in [5]. Here, the next port destination has been  

predicted based on the last consecutive port calls, an  

approach we have also followed for our baseline model  

presented in Section IV and evaluated in Section V. 

Hidden Markov models, which are extended models based 

on Markov processes, have also been found useful for the 

detection of anomalous behavior [5] or the prediction of 

motion patterns [6] of vessels. As these projects do not 

have a direct influence on our work, we would like to refer 

the interested reader for further state of the art analysis to 

the aforementioned literature. 

In the following section we describe key aspects of 

modelling port-to-port-route predictio via Markov 

models. The derived method is evaluated and discussed in 

the subsequent Section V. 
 
 

4. Modelling Port-to-Port-Routes 

 

The most fundamental aspect for meaningful performance  

in machine learning is an adequate model choice. This  

does not only include the actual prediction precision, but  

also the usability of the model in an industrial context. This  

means that the model needs to balance the trade-off of  

being 
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Figure 1: Dependencies of an order 3 Markov process for next port prediction. 

 

• fairly accurate, 

• massively scalable (real-time and parallel  

 prediction of a multitude of vessels) and 

• efficiently reinforce able. 

 

The last point is especially important to ensure a long-

lasting and accurate service. While the next port 

destination is somewhat determined, unpredictable 

events (like technical issues) may occur which can 

ultimately lead to a rerouting of the respective ships. In 

order to simulate this kind of possibilities it is reasonable 

to use statistical models, in order to cope with these 

kinds of uncertainties. We quickly found that discrete 

Markov processes fulfill all these requirements. In the 

upcoming subsections we give a short  motivation  for  the  

usage  of  Markov  processes followed by a short 

theoretical description of these models and  a  discussion  

on  how  and  why  we  modelled  and implemented the 

models that were evaluated in section V. 
 

A. Discrete Markov Processes 

 

Discrete Markov processes are representatives of Bayesian 

networks. They 

• model temporary relations between states (port  

 to port routes), 

• are comparatively easy and fast to calculate as  

 they mainly are built on basic linear algebra 

operations and 

• are efficiently reinforce able. 

 

Once learned, these models can not only give an  

estimation of the most probable port destination but 

can 

also give an estimation of the following ports and the  

probability   of   their   occurrence (in   the   respective  

model). 

Furthermore, these models can be extended to so called 

hidden   Markov   models   which   define   a   separate 

“observable” stochastic process (e.g. AIS data) from which 

one can infer the underlying system state (e.g. port areas). 

This might be of interest in future work as one could 

directly estimate the last port from AIS data without any 

event preprocessing (port calls) or even use the AIS data 

after departure to decide which of the most probable ports 

(according  to  the  here  presented  underlying  model) 

matches   the   real   destination. 

At this point, we would like to give a short introduction to 

the theoretical background of Markov processes in order to 

provide a better understanding of the implemented model. 

For further information the interested reader is referred to 

the relevant literature (for example [7]) 
 

A Markov process is a stochastic process 
 

X=(Xt)t∈T 

 

where Xt  denotes a random variable at timestamp with 

values of the feature space. 
 

S={S1,S2,…,Sn} 

 

The discrete space of time T does not hold the actual time 

of the respective port calls but does only determine the 

chronological order of the events. The main assumption of 

a Markov process is that the next system state X t does only 

depend on the last k states: 
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P(Xt | Xt-1,Xt-2 ,…,X0) = P(Xt | Xt-1,Xt-2,...,Xt-k)  

 

This property is often called memoryless or Markov  

property. In this case X is called a discrete k-th order  

Markov process. The transition probabilities of a first order  

process can be stored in a matrix A ϵ R⁽ⁿ 
x
ⁿ⁾ with entries: 

 

aij=P(Xt=Sj│Xt-1=Si) 

 

With these conventions one can easily predict the next 

system state or rather the probabilities of all potential next 

states   by   multiplying   the   transition   matrix   by   the 

probability distribution vector πt ϵ Rⁿ: 
 

πt+1=A πt 

 

Here, the i-th element of πt holds the probability of the 

system being in state Si at timestamp t ϵ T: 
 

(πt)i = P(Xt=Si) 

 

This allows fast and parallelly computable predictions as 

there  exist  many  linear  algebra  libraries  and  software 

environments  that  handle  these  kinds  of  operations 

efficiently. This is especially important as any higher order 

Markov process can be transformed in a first order process 

by combining the sequences of the last states via cartesian 

products (Xt-1=(Xt-1,Xt-2,…,Xt-k)) [7] 
 

B. Port-to-Port Markov Processes 

 

After this basic introduction to Markov processes, we  

present and discuss our solutions for the prediction of port  

to port routes, in the case of untrustworthy AIS 

destination flags. 

As we set the framework of the statistical model, the main 

aspect that drives the prediction accuracy is the adequate 

choice of the feature space. We tested three different 

scenarios which all share the following structure: 

                               S=℘
k
×⊗i

m
Λi 

 

 

Here S denotes the feature space, ℘ the discrete space of 

ports (LOCODEs), k the number of last port calls that 

should be included and the ⊗i
m

Λi  cartesian product of m 

distinct vessel characteristics (for instance vessel type) that 

are  used  for  further  clustering.  As the vessel data is 

invariant over time it might be cleaner to describe the 

approach as a set of independent Markov processes for 

varying vessel characteristics with feature space S=℘
k
. 

The exponent k represents in this case the order of the  

model that is built for the specific vessel data combination. 

If Λi={λ
i
1 ,…,λ

i
|Λ_i | } describes the space of the i-th vessel  

characteristic, the overall model (neglecting the initial/  

current distribution) can be described by the following set  

of  transition  matrices: 

 

𝐴𝜆𝑖1
1 ,𝜆𝑖2

2 ,…,𝜆𝑖𝑚
𝑚 = (𝑃(𝑋𝑡 = 𝑆𝑗|𝑋𝑡−1 = 𝑆𝑖 , 𝜆𝑖1

1 , 𝜆𝑖2

2 , … , 𝜆𝑖𝑚

𝑚 ))
𝑖𝑗

 

At this point one needs to find a good set of parameter  

values for the amount of last ports considered (k) and  

static vessel data for clustering purposes. It is necessary to  

understand, that the number of transition matrices is equal  

to the size of the space of the static vessel data 

⊗i
m

Λi which means that if one distinguishes 10 vessel  

types, one needs to calculate 10 transition matrices. If one  

adds 5 size classes per vessel type, the number of matrices  

needed increases to 50. This is why it is generally not  

advisable to use a high number of static vessel data,  

although the sparsity of the matrices (that is the number of 

0 probabilities [which do not need to be physically stored]) 

usually increases with finer categorization.    

Based on this theoretical groundwork we tested three  

different approaches. While theoretically possible, all of  

these neglect the AIS destination entry as it is assumed to  

be invalid. The beauty of this is that there is no need to  

find an ever-increasing complex set of rules that map  

prominent mistakes like incorrect grammar or mistakenly  

stated subports to the respective port destination. Instead,  

the three scenarios can be described as follows: 
 

1.  Using the last k port calls only 

2.  Using the last k port calls and vessel type 

information 

3.  Using the last k port calls and the MMSI number 

for vessel 
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The evaluation of port calls without further categorization  

is meant to establish a baseline on how good port-to-port  

routes describe real vessel journeys in general. For the  

second   scenario   we   used   the   level 2 vessel type  

categorization of the widely known IHS Fairplay Database  

which distinguishes 10 types (+1 for unknown types). Using  

vessel types should be suited for separating service vessels  

like tugs that are mainly operating at the same port and  

ocean-going vessels like container ships or oil tankers  

which follow more complex routes. In contrast to this  

general approach we tried to deliberately overfit the model  

by using the MMSI number as a categorization parameter.  

This means that every ship gets its own Markov process  

and therefore its own transition matrix. The latter are in  

this   scenario   very   sparse   as   only   the   port-to-port- 

sequences that exist in the historical track of the respective  

vessels hold non-zero probabilities. 

In general, it might be more advisable to use the IMO  

number of vessels as this number serves as an unique  

identifier. Anyhow, due to better coverage we choose to  

use MMSI numbers in this experimental setup. Due to the  

structure of the problem, the sparsity of the matrices and  

the comparatively high ratio of data selection to 

floating point operations the whole scenario can be 

conveniently implemented   and   processed   in   

relational database systems. 
 

C. In-Database Machine-Learning 

 

At this point we would like to describe how and why we  

suggest   implementing   the   described   model   in   a  

(distributed) relational database system. As discussed in [8]  

and [9] these systems are ideally suited to provide efficient  

long   term   implementation   of   Markov   models.   The  

standardized and widely supported query language SQL  

ensures implementation independence of the concrete  

system used and its longevity. Furthermore, in-database  

solutions enable the processing of (preprocessed) data as  

close to the original data as possible, which in general  

ensures   data   security (provided   by   the   database  

management system) and low network traffic. For a more  

detailed discussion on advantages of pure database  

solutions the interested reader is referred to [8] and [9].  

Rather than storing a multitude of sparse matrices, we 

 

grouped the whole model in one big sparse tensor with the 

following   relational   schema: 
 

A( 

[ 

mmsi  BIGINT,| 

vesseltype  VARCHAR,  

] 

lastport  CHAR(5), 
 

k_th_lastport  CHAR(5), 

nextport  CHAR(5), 

p  DOUBLE PRECISION 

) 

where p  denotes  the  probability  of “nextport”  is  the  

subsequent port after the port sequence specified by the  

attributes “lastport”   to “k_th_lastport”.   Due   to   its  

compactness and its role as an identifier we only used the  

LOCODES for port identification. As the prediction process  

consists of a simple sparse matrix multiplication for a  

possibly selected mmsi number or a vessel type which is  

internally processed in the database system via a grouped  

aggregation of a joined table it is necessary to provide the  

model with a reasonable index structure. Therefore we  

used   a   nested   b-tree   index   structure   on ([mmsi,  

vesseltype], lastport, …, k_th_lastport ).  This allows the  

prediction of the nextport (or a sequence of next ports) in  

milliseconds, allowing for a high number of simultaneous  

real time prediction queries. In production scenarios it is  

feasible to use distributed database systems to ensure low  

latency and fault tolerance in the context of big data  

(“velocity”). 
 

5. Model Evaluation 

 

In the following subsections we present and discuss the  

actual experimental evaluation and the implications we  

have derived from the results. For this we start with a brief  

description of the training process and the underlying  

training data. 
 

A. Model Training 
 

We used company internal port call events that were  
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derived from the global AIS network of FleetMon. These 

events were triggered (once) when a vessel entered a port 

zone and came to hold for a given period of time. Possible 

port call duplicates due to GPS jittering or brief departures 

from the port zone were accounted for in post processing. 

The port call events include amongst other AIS-data at 

arrival and departure (for instance the destination entry or 

the MMSI number) as well as processed zone data like the 

current port (LOCODE) and the last k ports. 

For the training process we used all port call events from 

the years 2018 and 2019, which overall make a total of 

over 50 million port calls from over 600 thousand vessels 

and more than 4000 ports. 

The calculation of the transition matrices (or the tensor) is  

done using the classical maximum likelihood approach (see  

for  instance [10]): 

 

𝑎𝑖𝑗 =
# 𝑆𝑖 → 𝑆𝑗  

# 𝑆𝑖

 

Basically, the procedure counts all the transitions from one  

state (port call sequence + MMSI/Vessel Type) to another  

and the times the base state occurred in the training set.  

This simple structure is not only convenient to implement  

in SQL, but also allows a fairly easy reinforcement process. 

 

For  this  one  only  needs  to  store  the  nominator  and 

denominator  separately,  so  that  the  counts  can  be 

regularly or even continuously updated. This is especially 

important to account for new vessels, ports or even newly 

established   routes. 
 

B. Evaluation data 

 

We evaluated the trained models against all of the  

aforementioned port calls that used destination entries  

that could at some point in time not be mapped to their 

real port destination. Therefore, the evaluation data 

with a total of over just above 20 million port calls is a 

real superset of the actual set of not matchable 

destinations. The most prominent problem class here are 

vessels that specify in some form Yangshan Port (e.g. 

“YANGSHAN”, “YANG SHAN”, “YANGSAN”, …) as their 

main destination, which is technically incorrect as Yangshan 

Port is a sub port of the Port of Shanghai. This alone 

accounts for well above two  million  port  calls  with  non-

matchable  next  port destinations. The other main 

problem classes consist of grammatical errors and 

deliberately unidentifiable entries like “00000000” or 

similar. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Results of classification differentiated between correct prediction (solid bar) and correct result being in top 3 of predicted next ports 

(transparent bar). The Order (top caption) represents the number of last ports that were considered for the next port prediction. The bar labels describe 

whether no additional static vessel data ("Ports"), the vessel type ("VT") or the MMSI number (“MMSI”) has been used as an additional classification 

source. 
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C. Evaluation Results and Discussion 

 

The results of the three different approaches with varying 

number of most recent port calls are depicted in Figure 2. 

The solid bars represent the correct prediction by using the 

most probable port, while the transparent bar indicates 

whether the correct port destination was included in the 

top 3 most probable destinations. The latter might be of 

interest  for  post  processing  purposes  when  the  most 

probable port can be dismissed as the real destination due 

to the observed vessel route. 

In general, it can be seen that all models increase their 

accuracy when using more information of the last port-to- 

port route. The MMSI model significantly outperforms the 

other two models and reaches a fairly high accuracy of 

93% and 99% for the top 3 case when including the most 

recent 5 port calls.  While the use of vessel types is 

beneficial for the accuracy in comparison to no additional 

data, the increasement is close to negligible. 

This might be caused by a suboptimal choice of vessel type 

categorization, as the level 2 categorization of the IHS 

statcode model uses only 10 different vessel types which 

leads  to  for  instance  to  a  category  that  combines 

passenger ships and dry cargo vessels. Two types of vessels 

which surely show very different behavior in their journeys 

(ports and frequency of port calls). 

Anyhow, with correct predictions from 60% to 80% and top 

3 predictions between 70% and 95% both of the non MMSI 

models still show potential for further use, especially after 

some recalibration. 

This might come to effect as the vessel specific approach  

(MMSI) might suffer from long settling periods. That means  

that new port-to-port-routes of a specific vessel might  

need to be seen for quite some time until the model can  

accurately predict the route in production. While this is not  

that big of a problem for newly built vessels as the overall  

count of port calls is low, it is especially problematic for  

older vessels that have seen several route cycles before.  

Especially for this circumstance one might need to  

introduce some sort of possibility to forget old routes into  

the model. Alternatively, one can use a hybrid model where  

unknown routes use the vessel type approach instead of  

the vessel specific one. Overall the results as well as the  

practical feasibility of the models are very promising and 

 

will be further developed for practical use. 
 

6. Conclusion and Future Work 

 

This paper presented and discussed AI-based approaches 

for the prediction of port-to-port routes via markov 

processes. It has been shown that these kind of models are 

ideally suited for scalable services and accurate predictions 

for vessels destinations in the case of unidentifiable AIS 

destination entries. 

We are currently planing on optimizing the presented  

solution in three main steps. Firstly we will train the  

model on more data. Secondly we will analyze how we can  

implement a vessel specific way to forget unused old port- 

to-port-routes that interefere with the current prediction  

model. Thirdly we will try to built a better vessel type  

categorization for a more accurate general model. This  

might be done by using more vessel subtypes or by adding  

additional information like classes of gross tonnages or  

vessel size. 
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