

The effects of biofilter on the removal of greenhouse gases at anaerobic digestion plants

Khả năng loại bỏ khí gây hiệu ứng nhà kính của các bể lọc khí sinh học tại các nhà máy xử lý chất hữu cơ bằng biện pháp kỵ khí

Research article

Nguyen, Thanh Phong¹*; Clemens, Joachim²; Cuhls, Carsten³

¹Faculty of Science and Technology, Hoa Sen University, 8 Nguyen Van Trang, District 1, HCM City, Vietnam; ²Faculty of Agriculture, University of Bonn, Karlrobert-Kreiten Str. 13, 53115 Bonn, Germany; ³Ingenieurgesellschaff für Wissenstransfer, Gewitra mbH, Im Moore 45, 30167 Hannover, Germany

This study investigated the removal of gases such as methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from biofilters in nine anaerobic digestion plants in Germany that treat biowaste. The treatment is in form of mechanical pre-treatment, anaerobic digestion followed by a composting with or without intensive aeration. The exhaust gases from the mechanical and anaerobic steps are treated by biofilters. In average, the biofilters removed 30% of total organic carbon (TOC), 50% of non-methane volatile organic carbon (NMVOC) and 51% NH3, whereas N2O concentrations increased by 26%. For CH4 the biofilters had only a small removal effect (6%).

Nghiên cứu khảo sát sự loại bỏ những khí gây hiệu ứng nhà kính như CH_4 , N_2O và NH_3 từ những bể lọc khí sinh học ở chín nhà máy xử lý rác thải hữu cơ ở nước Đức bằng các biện pháp kỵ khí và hiếu khí. Rác hữu cơ được xử lý ở nhà máy thông qua các biện pháp như tiền xử lý bằng cơ học, kỵ khí và tiếp theo là hiếu khí với công nghệ thổi khí chủ động hoặc không thổi khí chủ động. Khí thải từ các quá trình cơ học và kỵ khí được xử lý bằng biện pháp lọc khí sinh học trước khi thải ra môi trường. Trung bình, những bể lọc khí sinh học loại bỏ 30% tổng lượng carbon hữu cơ, 50% những chất carbon hữu cơ bay hơi nhưng không phải khí methane và 51% khí ammoniac. Trong khi đó, nồng độ khí N_2O tăng lên 26% sau khi qua bể lọc khí sinh học. Đối với khí methane, bể lọc khí sinh học có hiệu suất loại bỏ với loại khí này rất thấp chỉ 6%.

Keywords: greenhouse gas, emissions, composting, windrows, organic waste, methane, biofilter

1. Introduction

Anaerobic digestion (AD) for treatment of biowaste is rapidly gaining interest in Germany (Mata-Alvarez *et al.*, 2000; Fricke *et al.*, 2005). The treatment is essentially based on the activities of microorganisms that transform organic substances into biogas (Appels *et al.*, 2008). Biogas is used as renewable energy source, and nutrients in the residue can be recovered in agriculture as fertilizer or soil conditioner (Møller *et al.*, 2009). In addition, AD of biowaste is attracting attention as an effective method to reduce greenhouse gas (GHG) emissions according to Kyoto protocol (Møller *et al.*, 2009). According to the life cycle analysis (LCA), AD results in negative GHG emissions. The total GHG emissions for AD can reduce up to one tonne CO₂ equivalent/ Mg separated organic waste (Sanscartier *et al.*, 2011). Actually, many studies have been conducted to show the benefits of AD treatment, for instance the works of Bockreis and Steinberg (2005), Fricke *et al.*, (2005), Zupančiča, (2008) and Møller *et al.*, (2009). In fact, AD plants may have fugitive emissions of CH_4 , N₂O and NH₃.

CH₄ and N₂O are considered to be strong greenhouse gases (GHGs), whereas NH₃ is identified as an odour component and an indirect GHG. According to the Intergovernmental Panel on Climate Change (IPCC, 2007), the global warming potential of CH₄ and N₂O in 100 years are respectively 25 and 298 times higher than CO₂. According to Insam and Wett (2008), CH₄ is the major contributor to GHG emissions from waste treatment. Landfills and waste water are the largest sources of CH₄ emissions, accounting for 90% of CH₄ emissions linked to the waste sector. In developed countries, CH₄ produced in landfills is collected and used as a renewable energy source (Bogner *et al.*, 2008).

Exhaust gases from the encapsulated parts of AD plants are treated by biofilters before they are released into the atmosphere. In a biofilter, waste gas passes biofilter material (e.g. wood chip and root bark) and organic compounds are degraded by microorganisms (Hort *et al.*, 2009). The performance of a biofilter depends on the composition of the exhaust gas, packing material, nutrient supply, temperature, pH, pressure drop and residence time (Deshusses *et al.*, 1999).

The aim of the study was to investigate the biofilter's efficiency. The biofilters in nine operating AD plants in Germany, two wet digestion plants, four dry digestion plants and three solid digestion plants, were evaluated.

2. Materials and methods

2.1 Measured locations

Fifteen biofilters at nine AD plants were investigated in the study. The gas before and after biofilter was analysed at each plant for 1 week. At capsuled biofilters the treated air left the biofilter in a chimney. Here the gases were measured. At open biofilter, $16m^2$ of the biofilter (4x4m) was covered by a thin foil. Concentrations of the treated gases were measured under the foil (Figure 1).

At two AD plants, acid scrubbers were used to eliminate NH₃. High NH₃ concentrations in the raw gas should be removed by acid scrubbers. To evaluate the NH₃ and other gases such as TOC, CH_4 and N_2O removal efficiencies of the acid scrubbers. The concentrations of NH₃, TOC, CH_4 and N_2O at the inlet and outlet of the acid scrubbers were measured.

2.2 Emission determinations

Continuously monitored parameters included TOC, CH₄ and N2O. TOC was measured by flame ionisation detector (FID) (Bernath Atomic 3006) while CH₄ and N₂O were measured by an infrared gas analyser (ABB). Gas concentrations in the treated and untreated exhaust air were recorded every minute. To control the accuracy of the infrared gas analyser, exhaust gases were sampled manually by evacuated headspace vials and subsequently analysed on CH₄ and N₂O by gas chromatography (ECD/FID) in the laboratory. A manual discontinuous analysis was applied for NH₃ measurement: NH₃ was extracted from the waste gas stream by absorbing it in sulfuric acid and subsequently measured colorimetrically in the laboratory. NH₃ samples of treated and untreated gases were collected twice. Air fluxes to the biofilter were measured by an anemometer (testo 435) or micromanometer (Müller Instruments EPM-300-BA, Germany). It was assumed that the volumes of treated and untreated air were the same.

Figure 1: Foil covers on a biofilter for CH₄, N₂O and NH₃ concentration measurements

3. Results and discussion

3.1 The effects of biofilters on the removal of TOC, NMVOC, CH₄, NH₃ and N₂O in waste air at AD plants

The concentrations at the inlet and outlet of the biofilters in form of TOC, NMVOC, CH₄, NH₃ and N₂O are shown in the Figure 2. The concentrations of NMVOC were calculated by subtracting TOC and CH₄-C. Inlet gas contained an average of 151mg/m^3 TOC in the range of 26-333 mg/m³, an average of 150mg/m^3 NH₃ in the range of 2.4-1,704mg/m³ and in average of 2.3mg/m³ N₂O in the range of 0.8-6mg/m³ and in average of 168mg/m^3 CH₄ in the range of 13-380 mg/m³ respectively. The results are in line with those found by Amlinger *et al.*, (2008) and Clemens and Cuhls (2003).

Biofilters reduced TOC, NMVOC and NH₃ but were a source for N₂O. Additionally, biofilters reduced CH₄ only slightly. Mean relative reductions were 30, 6, 50 and 51% for TOC, CH₄, NMVOC and NH₃ respectively, whereas N₂O concentrations were 26% higher in treated air. The increase of N₂O may be explained by the fact that NH₃ is converted to N₂O by nitrification due to continuous aerobic conditions in the biofilters (Melse and Van der Werf, 2005). According to previous studies, around one third NH₃ that enters biofilters can be transformed and released as N₂O (Trimborn, 2003). Similarly, Clemens and Cuhls (2003) reported that 26% of NH₃ was transformed into N₂O in biofilters. The reduction of TOC, CH₄ and NH₃ were lower than in previous studies (Table 1). Ojstrsek and Fakin (2009) found that TOC removal efficiency of biofilters varied from 31 to 75%. Similarly, Soyez (2002) found that 50% of TOC was removed in the biofilter. With regard to other literature, CH₄ was reduced by 15% (Amlinger et al., 2008). NH₃ was removed in biofilters by more than 90% (Soyez, 2002; Chen et al., 2005; Hort et al., 2009; Ryu et al., 2011), whereas Akdeniz (2012) found that the reduction efficiency of NH₃ were from 53 to 64% at full-scale biofilters.

Figure 2. Box plots (n=15) show mean gas concentration values (mg/m³) of treated and untreated air. Box indicates 25 and 75% percentile; - minimum and maximum of total organic carbon (TOC), methane (CH₄), non-methane volatile organic carbon (NMVOC), ammonia (NH₃) and nitrous oxide (N₂O).

 Table 1: Comparison of removal efficiency of biofilters: this study and data from literature

Authors	Removal efficiency of biofilter (%)				
	TOC	CH4 [*]	NMVOC	NH ₃ *	N_2O^*
This study	11 to	1 to	11 to 100	6.4 to	0.1 to
	70	25		94	-500
(Soyez, 2002)	50	-	83	90	-
(Akdeniz, 2012)	-	-	-	53 to	-29.2
				64	
(Amlinger <i>et al.</i> , 2008)	-	15	-	-	-
(Ryu et al.,	95 to	-	-	92	-
2011)	99				
(Lopez et al.,	90	-	-	-	-
2011)					
(Hort et al.,	-	-	-	94	-
2009)					
(Chen et al.,	-	-	-	97 to	-
2005)				99	
(Ojstrsek and	31 to	-	-	-	-
Fakin, 2009)	75				
(Schlegelmilch	-	-	-	100	-
<i>et al.</i> , 2005)					
(Clemens and	-	-	-	13 to	-
Cuhls, 2003)				89	
(Trimborn, et	32 to	-7 to	75 to 100	-35	-9 to -
al., 2003)	78	26		to 91	116

no data

* negative values mean a production in the biofilter

3.2 Acid scrubber for NH₃ removal

The inlet concentrations of TOC, CH_4 , NH_3 and N_2O were 215, 227, 24 and 2.4mg m⁻³ respectively (Figure 3).

Removal efficiency of the acid scrubber was 48% for NH₃. Concentrations of TOC and CH₄ were not significant difference before and after the acid scrubber. Neutral to slightly N₂O formation from NH₃ was found in the outlet gas.

Figure 3. Gas concentrations before and after acid scrubber

3.3 Purification efficiency of biofilters

Biofilters showed only a small influence on CH_4 emission reduction (6%) (Figure 4), whereas they were a source of N₂O emissions (from 0.1 to 500% N₂O was generated in the biofilters). Biofilters removed significantly TOC (30%), NMVOC (50%) and NH₃ (51%).

Figure 4. Mean biofilter's efficiencies (n=15) in AD plants. Bars show indicates minimum and maximum values of total organic carbon (TOC), methane (CH₄), non-methane volatile organic carbon (NMVOC), ammonia (NH₃) and nitrous oxide (N₂O).

The purification efficiency of the analysed biofilters differed. According to IPCC (2007), the emission factors were transferred into CO_2 equivalents. Five of fifteen investigated biofilters resulted in higher CO_2 equivalents Mg⁻¹ in the exhaust gas as compared to the untreated gas. These five biofilters increased the overall CO_2 emissions from 8 to 16% due to additional N₂O production. The other ten biofilters showed a positive CO_2 equivalents balance and reduced GHG by 0.02 to 21%.

4. Conclusions

In conclusion, biofilters showed an influence on TOC, NMVOC and NH₃. However, N₂O is generated significantly and is the major contributor to the GHG emissions.

There was no significant difference of the treated and untreated CH_4 concentrations. Therefore, we conclude that biofilters could not eliminate CH_4 concentrations in waste gas.

Biofilter treatment alone shows insignificant GHG emissions reduction. GHG emissions from AD plant can be limited by a combination of acid scrubber and biofilter.

5. References

- [1] Akdeniz, N. J., K. A. 2012. Full-scale biofilter reduction efficiencies assessed using portable 24-hour sampling units. *Journal of the Air and Waste Management Association*, **62**, 170-182.
- [2] Amlinger, F., Peyr, S. and Cuhls, C. 2008. Greenhouse gas emissions from composting and mechanical biological treatment. *Waste Management and Research*, **26**, 47-60.
- [3] Appels, L., Baeyens, J., Degrève, J. and Dewil, R. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. *Progress in Ener*gy and Combustion Science, 34, 755-781.
- [4] Bockreis, A. and Steinberg, I. 2005. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills. *Waste Management*, **25**, 337-343.
- [5] Bogner, J., Pipatti, R., Hashimoto, S., Diaz, C., Mareckova, K., Diaz, L., Kjeldsen, P., Monni, S., Faaij, A., Qingxian, G., Tianzhu, Z., Mohammed Abdelrafie, A., Sutamihardja, R. T. M. and Gregory, R. 2008. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). *Waste Management and Research*, 26, 11-32.
- [6] Chen, Y.-X., Yin, J. and Wang, K.-X. 2005. Longterm operation of biofilters for biological removal of ammonia. Chemosphere, 58, 1023-1030.
- [7] Clemens, J. and Cuhls, C. 2003. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste. Environmental Technology, 24, 745-754.
- [8] Deshusses, M. A., Johnson, C. T. and Leson, G. 1999. Biofiltration of high loads of ethyl acetate in the presence of toluene. Journal of the Air and Waste Management Association, 49, 973-979.
- [9] Fricke, K., Santen, H. and Wallmann, R. 2005. Comparison of selected aerobic and anaerobic procedures for MSW treatment. Waste Management, 25, 799-810.

- [10] Hort, C., Gracy, S., Platel, V. and Moynault, L. 2009. Evaluation of sewage sludge and yard waste compost as a biofilter media for the removal of ammonia and volatile organic sulfur compounds (VOSCs). Chemical Engineering Journal, 152, 44-53.
- [11] Insam, H. & Wett, B. 2008. Control of GHG emission at the microbial community level. Waste Management, 28, 699-706.
- [12] IPCC. 2007. Climate change 2007- the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK.
- [13] Mata-Alvarez, J., Macé, S. and Llabrés, P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74, 3-16.
- [14] Melse, R. W. and Van der Werf, A. W. 2005. Biofiltration for mitigation of methane emission from animal husbandry. Environmental Science and Technology, 39, 5460-5468.
- [15] Møller, J., Boldrin, A. and Christensen, T. H. 2009. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution. Waste Management and Research, 27, 813-824.
- [16] Ojstrsek, A. and Fakin, D. 2009. Colour and TOC reduction using biofilter packed with natural zeolite for the treatment of textile wastewaters. Desalination and Water Treatment, 33, 147-155.
- [17] Ryu, H. W., Cho, K. S. and Lee, T. H. 2011. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system. Bioresource Technology, 102, 4654-4660.
- [18] Sanscartier, D., Maclean, H. L. and Saville, B. 2011. Electricity Production from Anaerobic Digestion of Household Organic Waste in Ontario: Techno-Economic and GHG Emission Analyses. Environmental Science and Technology, 46, 1233-1242.
- [19] Schlegelmilch, M., Streese, J., Biedermann, W., Herold, T. and Stegmann, R. 2005. Odour control at biowaste composting facilities. Waste Management, 25, 917-927.
- [20] Soyez, K., Plickert, S. 2002. Mechanical-Biological Pre-Treatment of Waste – State of the Art and Potentials of Biotechnology. Universität Potsdam.
- [21] Trimborn, M., Goldbach, H., Clemens, J., Cuhls, C. and Breeger, A., 2003. Reduction of greenhouse gases in the exhaust air of biofilters at biowaste treatment plants. In: Band 14 der Bonner Agrikulturchemischen Reihe, Abschlußbericht
- [22] Zupančiča, G. D., Uranjek-Ževartb., Nataša, Roša., Milenko 2008. Full-scale anaerobic codigestion of organic waste and municipal sludge. Biomass and Bioenergy, 32, 162-167.