

Lessons Learned 2, 1 (2022)
Submitted: 30.03.2022
Accepted: 19.05.2022
DOI: https://doi.org/10.25369/ll.v2i1.37
ISSN: 2749-1293 (print); 2749-1307 (online).

Lessons Learned | Volume 2 (2022) | Issue 1 2-1/37-1

Digital skills for humanities and social science students.
Benefits of a Blended Learning format for teaching

programming skills

Y. Frommherz*, J. Langenhorst

Chair of Applied Linguistics, Institute of German Studies, Dresden University of Technology

Abstract

Die Geistes- und Sozialwissenschaften (GSW) werden zunehmend digital. Wissenschaftler:innen
stehen mittlerweile relevante Daten in großer Quantität zur Verfügung – aus dem Internet und
durch die Digitalisierung analoger Bestände. Die neue Masse an Daten ermöglicht und erfordert
den Einsatz quantitativer Analysemethoden. Zwar existieren niedrigschwellige Tools für einzelne
Arbeitsschritte bei der Erschließung und Auswertung von Daten innerhalb der digitalen GSW,
doch bieten diese lediglich vordefinierte Schnittstellen und schränken Wissenschaftler:innen so-
mit ein. Grundlegende Programmierkenntnisse können hier Abhilfe schaffen, indem sie For-
schenden ermöglichen, ihre Fragestellungen wesentlich flexibler zu verfolgen. Die Professur für
Angewandte Linguistik bietet daher seit Langem einen Programmierkurs an, der sich spezifisch
an den Bedarfen Linguistikstudierender ausrichtet und diesbezüglich stetig verbessert wird. Die
Umstellung auf ein Blended Learning-Format im Video-Tutorial-Stil erwies sich als sehr geeigne-
tes Setting: Studierende können die Inhalte räumlich-zeitlich flexibel konsumieren und so ihren
Fortschritt individuell gestalten. Dieser Beitrag liefert einen ausführlichen Bericht über die Ver-
mittlung von Programmierkenntnissen an Linguistikstudierende, diskutiert Vor- und Nachteile
des umgesetzten Blended Learning-Formats und bietet einen Ausblick auf ein laufendes Projekt,
in dem der bestehende Kurs optimiert und auf Studierende anderer GSWs ausgeweitet wird.

The humanities and social sciences (HSS) are subject to a digital turn. Scientists can now access
relevant data in great quantities from the internet and by digitizing analog data sources. This
new bulk of data both enables and requires the use of quantitative methods. While low-thresh-
old software does exist for specific steps within digital HSS research, these tools are of limited
use in that they predefine how researchers can interact with their data. With basic programming
skills, researchers can overcome this constraint and pursue their research goals much more
flexibly. Therefore, the Chair of Applied Linguistics has long been offering a programming
course. This course targets the specific needs of students of linguistics and has continuously
been improved in this regard. Especially switching to a Blended Learning format, primarily using
video tutorials, has proven to be an adequate setting: Students can study materials at their own
pace wherever and whenever they wish. This article provides a detailed account of how pro-
gramming skills can be taught to students of linguistics, discussing the (dis)advantages of the
implemented Blended Learning format and giving an outlook on an ongoing project which aims
at optimizing the course and extending it to students of other HSS.

*Corresponding author: yannick.frommherz@tu-dresden.de

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

2-1/37-2 Lessons Learned | Volume 2 (2022) | Issue 1

1. Introduction

The humanities and social sciences (hereafter:
HSS) are undergoing a digital turn [1-3] It has
never been easier to access large amounts of
data relevant to the HSS – whether from the In-
ternet or via the digitization of analog data
sets. This development makes the use of quan-
titative methods possible and at the same time
necessary [4, p. 297]. However, the focus in
HSS has traditionally been on qualitative re-
search. In addition to data access techniques,
these newly relevant quantitative methods go
beyond the skills typically taught in HSS curric-
ula. At the same time, however, low-threshold
tools have emerged that can be used to ac-
complish many new tasks within ever more
digital HSS research. For example, there is
easy-to-use software for examining texts with
regard to patterns occurring in them (such as
keywords). However, the analytical categories
that a user can choose between are always
predefined and thus limited. As soon as re-
search questions are pursued for which these
tools were not designed, at least basic pro-
gramming skills are required. Thus, if students
and researchers rely solely on such software,
they will hardly be able to exploit the full po-
tential which arises from the digital turn.
The Chair of Applied Linguistics at TU Dresden
therefore believes that teaching digital skills in
general and programming skills in particular is
a necessary part of a linguistics program. In or-
der to sustainably prepare students for the in-
creasingly digital research and professional
world, the Chair has been offering a program-
ming course for many years.
One challenge in teaching linguistics students
programming is that the students generally
have no prior knowledge of programming and
little technical knowledge in general. There-
fore, from the beginning, the design of the pro-
gramming course has focused on how these
skills can best be taught to the given target au-
dience. With this question in mind, the course
has been and continues to be developed.
Among other things, it was converted from a
traditional face-to-face seminar to a Blended
Learning format. In such a setting, elements of
traditional, temporally synchronous and spa-
tially co-present teaching are combined with
online learning content of different media

types that students can consume temporally
asynchronously and spatially flexibly [5-7]. This
allows students to largely control their own
learning progress, which has advantages when
learning programming (see below).
This paper provides a detailed report on how
programming skills can be taught to students
of German Philology, and specifically Applied
Linguistics. Building on a detailed argument of
how HSS researchers benefit from program-
ming skills as a fundamental digital compe-
tence (Ch. 2), the initial situation leading to the
switch to a Blended Learning format is de-
scribed (Ch. 3). Chapter 4 delineates the cur-
rent programming course and, finally, Chapter
5 concludes with an outlook on an ongoing re-
search project that will further optimize the ex-
isting course and extend it to students of other
HSS. The article is not least addressed to inter-
ested lecturers within the HSS who also want
to prepare their students for the possibilities
and requirements arising from the digital turn.

2. Why do humanities and social science

students need programming skills?

In the following, concrete steps of an exem-
plary study will be used to demonstrate why
HSS researchers benefit from programming
skills. Where appropriate, reference is made to
related techniques that also require basic pro-
gramming skills, but in return provide re-
searchers with methodological flexibility. The
exemplary study will use a quantitative ap-
proach to investigate how so-called success
coaches on YouTube engage their audience
linguistically. This is a topic that could be inves-
tigated as part of a student paper in a linguis-
tics program. Typically, this would be done in a
qualitative way, i.e., the focus would be on in-
dividual pieces of evidence (individual in-
stances of audience engagement) that would be
subjected to in-depth analysis.
In the quantitative approach pursued here,
however, a large amount of data is to be ana-
lyzed automatically in order to be able to rec-
ognize patterns that go beyond individual
pieces of evidence. Ideally, this will reveal reg-
ularities that would remain undiscovered us-
ing a qualitative approach. In any case, how-
ever, the patterns in the data can be quantified,
allowing clear statements about the relevance

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

Lessons Learned | Volume 2 (2022) | Issue 1 2-1/37-3

of a certain phenomenon in the given context.
In the first step, the data, i.e., the language oc-
curring in the videos, needs to be accessed.
With the help of existing modules (roughly
speaking, ready-made code blocks for a spe-
cific purpose) for the programming language
Python used here, as well as a few additional
lines of code, subtitles of a given YouTube
video can be accessed using its ID (each
YouTube video has such an ID). The subtitles
can then be saved in a suitable format includ-
ing relevant metadata (Fig. 1 and Fig. 2).

Fig. 1: Part of the code for downloading YouTube
transcripts.

Fig. 2: Saved YouTube transcripts.

Similar modules that allow researchers to
download specific content from social media
with just a few lines of code are available for
various platforms. Apart from this, researchers
can also scrape themselves, i.e., download spe-
cific content from almost any website (so
called web scraping). Another data mining
method available to researchers with pro-
gramming skills is Optical Character Recognition
(OCR). This makes it possible to read characters
from images, making the extracted text ma-
chine-readable, which is interesting both for
historical sources, but also for so-called
sharepics (images with text for sharing, such as
on Instagram).
The second step is to preprocess the collected
data. Using suitable modules, the data can be
managed, filtered and prepared for analyses in
a flexible and efficient way. For the analysis in
the context of the exemplary study, the col-
lected data should be available word for word,
which is done in a step called tokenization (Fig.
3).

Fig. 3: Tokenized text.

In the third step, the data is analyzed. For this
purpose, audience address is operationalized
as collocations of the personal pronouns Du
(informal ‘you’ in German) and Sie (formal
‘you’). Collocations are words that frequently
occur together, such as heavy and rain in com-
mon speech. Here, we will analyze which
words occur more frequently in the vicinity of
the addressing pronouns Du/Sie than can be
expected from their frequency in the rest of
the text (Fig. 4. shows this for Du, N = 4 videos).

Fig. 4: Collocations of ‚Du‘.

For Du, Fig. 4 shows, among other things, that
the modal verb können (‘can’) occurs most fre-
quently (compared to the expected frequency)
in the analyzed YouTube videos of success

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

2-1/37-4 Lessons Learned | Volume 2 (2022) | Issue 1

coaches. It seems that the proverbial key to
success advertised by the examined coaches
lies in the intrinsic ability of the target audi-
ence. This hypothesis could now be a starting
point for further quantitative and qualitative
investigation.
In summary, as demonstrated by this use case,
only with programming skills researchers can
efficiently access relevant data, preprocess
and analyze it in a methodologically flexible
manner tailored to the research question at
hand. Furthermore, programming skills are
immensely useful for visualizing data. Alt-
hough no-code software for this purpose ex-
ists as well (e.g., SPSS or Microsoft Office soft-
ware), programming skills enable a much more
flexible visualization, which is especially advan-
tageous for the purpose of scientific publica-
tion.
In addition to these concrete methodological
benefits of programming skills, digital work
also enables researchers to acquire or consol-
idate algorithmic thinking [4, p. 95]. Algorithmic
thinking is the ability to 1) analyze a given prob-
lem with precision, 2) define simple steps to
solve the problem, 3) create a solution from
these steps, i.e., construct a complete and cor-
rect algorithm, 4) test this algorithm for all typ-
ical as well as atypical cases, and 5) improve its
efficiency. Algorithmic thinking is not only a
prerequisite for successful programming, but
it equally grows out of exposure to code. Re-
searchers also benefit from practicing algorith-
mic thinking outside of programming, for ex-
ample in their scientific work, as a thorough,
sophisticated approach to a problem (1-3
above) as well as the constant effort to test a
potential solution (4) are elementary aspects in
both cases.

3. Initial situation

Being able to program is thus an increasingly
relevant digital skill for students. Therefore,
the Chair of Applied Linguistics has long of-
fered a course called Programming for Linguists.
As mentioned, before the switch to Blended
Learning, the course was conducted as a tradi-
tional face-to-face seminar teaching the script-
ing language Perl. From week to week, new
content was taught in the seminar and weekly
assignments had to be solved by the students.

In addition, a tutorial was offered, which is un-
usual for seminars in linguistics, but proved to
be necessary due to the density of the content.
Individual seminar sessions were used to col-
laboratively work on assignments, while others
served as an introduction to programming
concepts or, later in the semester, to specific
linguistic techniques such as web scraping and,
in particular, corpus analysis methods.
Over the course of the semesters, many stu-
dents were inspired to go about solving their
research questions using programming skills.
However, at the same time, many participants
did not complete the seminar – the dropout
rate was significantly higher compared to
other seminars at the Chair. Teaching a variety
of programming techniques in a single semes-
ter to students most of whom had never pro-
grammed before and often had little prior
technical knowledge turned out to be challeng-
ing in this mode.

4. Switch to Blended Learning

Starting with the winter semester 2020/21, the
course was first conducted in a Blended Learn-
ing format as part of the Covid-19-related con-
version to digital teaching. On the one hand,
asynchronous video content was offered. On
the other hand, the tutorial continued to be
held synchronously and – as far as the pan-
demic allowed – also spatially co-present.
Teaching materials of various media types,
first and foremost the aforementioned videos,
but also code snippets, illustrative diagrams,
supplementary documents, and links to fur-
ther resources were bundled (Fig. 5 and Fig. 6).
Communication in the seminar took place via
a chat room. Further advice on problems was
primarily given via e-mail. Later in the semes-
ter, so-called real-time coding was made availa-
ble in video format, i.e., recordings in which
complete programming tasks were solved in
real time, such as scraping a web page. Here,
the individual steps – analyzing the page, find-
ing links, downloading pages, extracting and
annotating text and metadata, assembling a
corpus file – were demonstrated step by step,
rather than merely explained (Fig. 7). These
real-time coding sessions were inspired by
coding streams on the streaming platform

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

Lessons Learned | Volume 2 (2022) | Issue 1 2-1/37-5

Twitch and on YouTube, where developers can
be watched programming live – or afterwards
in case the stream is recorded. Such streams
enjoy great popularity and now represent a
kind of teaching format in its own right [9][10].

One difference between the real-time coding
used in the seminar and the Twitch streams is,
of course, that there is never any live interac-
tion with the viewers.

Apart from the new format, another innova-
tion was that Python was taught instead of
Perl, since by the time the seminar was revised,
Python had advanced to be the programming
language in science. Python offers numerous
libraries for analyzing structured data (includ-
ing Pandas), data visualization (including Mat-
plotlib), annotation (including the NLP libraries
Stanza, SpaCy, NLTK, TextBlob, etc.), and scrap-
ing (including BeautifulSoup, Selenium). Addi-
tionally, Python is potentially easier to learn for
beginners than previously-taught Perl due to
its somewhat simpler syntax and semantics
(for a comparison of Python/Java: [11]).
Even though existing libraries are one reason
to teach a specific language, the focus of the
seminar – as a programming seminar – was to
have students develop as much code as possi-
ble themselves. Students should not simply as-
semble existing code using Python modules
like in a construction kit, but rather work out as
many steps as possible themselves. Pure intro-

ductions to libraries would hardly have added
any value compared to the existing low-thresh-
old tools mentioned at the beginning, which
also exist for the analysis of (corpus) linguistic
data (e.g., Corpus Workbench, Sketch Engine).
It would be possible, for example, to have a Py-
thon package output frequent co-occurences
with just a few lines of code. With little effort,
however, one can reproduce this process,
making transparent how the data is handled.
Thus, one is not confronted with a black box in
the form of a tool, but, having devised the indi-
vidual steps, one understands the process bet-
ter.
After the setup of Python was mastered and
the students had familiarized themselves with
the shell, the course introduced the basics of
programming such as control structures and
data types as well as related simple exercises.
Midway through the semester, more and more
specific corpus linguistic applications were
worked on.

Fig. 5: Overview page of the course (winter semester 2020/21).

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

2-1/37-6 Lessons Learned | Volume 2 (2022) | Issue 1

Corpus linguistics studies linguistic phenom-
ena on the basis of large collections of texts
(corpora), which are annotated linguistically
(e.g., with parts of speech) and with metadata
(e.g., author, year, genre). Students were first

provided with differently structured corpora to
be analyzed for frequent words, n-grams (n
consecutive words), etc. Then, the focus
shifted to creating and annotating own cor-
pora from web sources. Overall, students

Fig. 6: Course content.

Fig. 7: Real-time coding video with associated code snippet.

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

Lessons Learned | Volume 2 (2022) | Issue 1 2-1/37-7

learned to write scripts to examine self-cre-
ated corpora for various linguistic patterns as
well as the factors that condition their occur-
rence. Many other types of analyses can be de-
rived from the techniques learned, providing
students with methodological flexibility.

5. Results

The implementation of the seminar in the
Blended Learning format can be considered a
success. The dropout rate was lower than in
previous semesters and the submitted assign-
ments were mostly of high quality. In the win-
ter semester 2021/22, the seminar was offered
in the same form for the second time, with re-
sults comparable to the first semester.
This pleasing result seems to be due in large
part to the Blended Learning format itself. In
addition to spatial and temporal flexibility
when learning new content, the greatest ad-
vantage seems to be that the video content
can be watched as often as desired and sec-
tions that are not understood well can be re-
peated resulting in learners being less likely to
feel disengaged. In addition, the real-time cod-
ing described above (which can also be con-
sumed flexibly) conveys a more realistic image
of programming in two respects: First, it be-
comes clear that accomplishing real tasks – as
opposed to prefabricated, small-scale exer-
cises – requires a certain amount of time, and
that code grows incrementally in a way where
not every single line of code can be planned in
advance. Second, it becomes clear that it is not
possible to write more than a few lines of code
without adjustments becoming necessary or
errors creeping in. In contrast, in static repre-
sentations like textbooks only finished code is
shown. The code may be extended from exam-
ple to example, but the process behind it never
becomes visible in a dynamic way. The incre-
mental and iterative reality experienceable in
real-time coding could result in learners being
less likely to feel discouraged when they en-
counter problems in their own work. At the
same time, the videos present an all-round
vivid picture of programming, which can also
stimulate learners’ motivation. Overall, the
Blended Learning format seems to be suitable
for teaching programming to beginners from
linguistics.

A disadvantage is the omission of physically co-
present sessions in which participants work
out solutions together. Certainly, such ses-
sions bear the risk that individual participants
no longer keep up with the material, but at the
same time, working together in the same room
is also a motivating factor for students [8][9].
The Blended Learning implementation of the
seminar has so far been conducted completely
without collaborative elements – apart from
exercises in the tutorial. In addition, a certain
tension arose between the very flexibly con-
sumable course content on the one hand and
the strictly scheduled submission and subse-
quent evaluation of the homework – the eval-
uation by the lecturer took place in a fixed
rhythm. Although the real-time coding videos
gave the course a certain dynamic, all content
was static in that the students could not inter-
act with it. This certainly left some potential un-
used.

6. Outlook: Programming for humanities
and social sciences

Building on the positive experience with the
Blended Learning format for teaching pro-
gramming skills to linguists, a course offering
is currently being designed and developed that
aims not only at linguists but also students
from other HSS. This work is conducted as part
of the Experimentierraum Digitale Medienkom-
petenz (ExDiMed) project. The aim of the project
is to provide students from HSS with digital
skills in dealing with media and data by means
of Blended Learning formats. As stated at the
beginning, programming is a fundamental skill
in the increasingly digital HSS. ExDiMed, in
turn, is institutionally anchored in the virTUos
network and thus linked with other projects on
the topic of virtual teaching and learning at TU
Dresden in an open-source context.
The motivation for introducing a programming
course in linguistics also applies to other HSS,
as could be ascertained conducting interviews
with representatives of various HSS (specifi-
cally: communication, visual, historical, and so-
cial sciences): Students in these HSS generally
also have little to no prior programming
knowledge. In addition to the dominant quali-
tative evaluation, existing data sets from these
fields could also be analyzed quantitatively.

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

2-1/37-8 Lessons Learned | Volume 2 (2022) | Issue 1

Furthermore, there is great potential in tap-
ping new data sources (e.g., via web scraping,
API retrievals, or OCR). Moreover, text is an im-
portant, if not the most important, data type
not only in linguistics, but also in other HSS
(e.g., digitized historical writings, newspaper
corpora, or social media posts in history, com-
munication, and social sciences, respectively).
The focus of the offering will thus remain on
textual data, with possible excursions into, for
example, two-dimensional data (such as im-
ages in the visual sciences).
The programming language Python is re-
tained, but it will now be taught in the web-
based IDE JupyterLab. In so-called Jupyter Note-
books, code cells can be elegantly interwoven
with markdown cells (Fig. 8 and 9). The latter
can be used for explanatory texts or the for-
mulation of exercises and can be set as non-
editable for students. Code cells can either be
empty (e.g. for exercise tasks) or already con-
tain code that can be expanded by students
("Finish the code"), modified ("Set relevant pa-
rameters" or "Find the error") and, in any case,
executed.
Hence, an interactive notebook can be de-
signed in which students can acquire
knowledge in a self-directed manner and apply
it at the same time. Students receive their per-
sonal copy of a notebook and can therefore
not only add code to an exercise where explic-
itly expected, but also add as many additional
code and markdown cells as they wish (e.g., to
pursue their own ideas or to make notes at rel-
evant points).
The division of code into cells (possibly with
markdown cells in between) conveys and un-
derlines the incremental character of pro-
gramming already emphasized as important:
Cell by cell (step by step) a problem is solved,
and in each cell it is checked whether the code
delivers the desired (intermediate) result. In
this way, the step-by-step approach which is so
central to algorithmic thinking is also practiced
(see Ch. 1). The notebooks will largely replace
the videos from the current format. However,
individual notebooks, for example for the in-
troduction to the IDE, will be accompanied by
videos. The well-received real-time coding vid-
eos will also be retained. Videos can be embed-
ded elegantly in the notebooks.

The advantages of the Blended Learning for-
mat mentioned above (individual learning
pace and addressing different levels of compe-
tence, flexible learning in terms of time and lo-
cation, conveying a realistic picture of pro-
gramming) also apply after shifting from a
video-based approach to interactive note-
books which are partly accompanied by vid-
eos. At the same time, the content is prepared
much more dynamically, and students can in-
teract with it directly, which makes the course
less static compared to the current one.
In order to achieve additional interaction be-
tween the students, hackathons are planned, in
which participants work collaboratively on a
certain problem within a few hours. Exercises
in group work are also planned, for which the
collaboration option inside JupyterLab may be
used (the prerequisite is that the students ac-
cess the same server, which also enables col-
laborative, synchronous work from separate
locations). Collaborative learning settings have
been shown by various studies to be beneficial
in teaching programming skills [11-13]. In such
an environment, students can co-construct
ideas and solutions that they may not develop
in isolation [12].
In terms of content, a distinction is made be-
tween a basic module and several advanced
modules. In the notebooks of the basic mod-
ule, the theoretical foundation for program-
ming with Python will be laid. Topics such as
variables, operators, data types, control struc-
tures (conditional statements and loops), func-
tions and methods, import of modules and
packages as well as input/output are ex-
plained, again putting emphasis on hands-on
application and realistic exercises. The basic
module will be preceded by a concise, applied
introduction to algorithmic thinking (see Ch. 2).
Internalizing this basic way of approaching a
(programming) problem may be even more
important than the concrete syntax and se-
mantics of a given programming language [4,
p. 90]. Results from an iteratively designed pro-
gramming course [11] in which only one pa-
rameter was changed from condition to condi-
tion suggest that offering even a short unit on
algorithmic thinking prior to teaching actual
coding leads to better programming skills.

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

Lessons Learned | Volume 2 (2022) | Issue 1 2-1/37-9

Following the basic module, advanced mod-
ules will be dedicated to different use cases.
These include applied contents from the cur-
rent course (such as web scraping), which will
be modified in such a way that they are also of
interest to students from other HSS. In addi-
tion, subject-specific modules are planned that
specifically address the requirements of the re-
spective HSS (as an example: automated news
factor analysis for communication science).
Further advanced modules will deal with statis-
tical analysis and visualization. All advanced

modules will be independent of each other, so
that students from different HSS can compile a
programming course relevant to them on a
modular basis, presupposing they have com-
pleted the basic module. Regardless of the
adapted and expanded format, the goal re-
mains that this course should enable students
with little to no prior knowledge to work on
HSS research questions in a digitally compe-
tent manner – from accessing their own data
to data preprocessing, analysis, and visualiza-
tion.

Fig. 8: Introduction to conditional statements as an example of the combination of markdown cells (explana-
tory texts) and code cells (not executed here) in JupyterLab.

Y. Frommherz & J. Langenhorst / Digital Skills for humanities and social sciences

2-1/37-10 Lessons Learned | Volume 2 (2022) | Issue 1

In the medium term, the developed course is
to be anchored in the new master's program
Digital Humanities at TU Dresden (starting in
winter semester 2022/23). In addition, it will be
made available as an open educational re-
source and indexed in relevant directories.

Acknowledgements

We would like to thank Gregor Mitzka, who
supports both the current programming
course and ExDiMed as a student assistant.

The ExDiMed project is funded by the Stiftung
Innovation in der Hochschullehre as part of the
virTUos network.

Literature

[1] Baum, C. & Stäcker, Th, Die Digital Humanities im

deutschsprachigen Raum. Methoden. Theorien. Pro-
jekte, in: Dies. (Hg.): Grenzen und Möglichkeiten der
Digital Humanities (= Sonderband der Zeitschrift für
digitale Geisteswissenschaften 1), 2016.
https://doi.org/10.17175/sb001_023

[2] Snee, H., Hine, C., Morey, Y., Roberts, S., & Watson, H.
Digital Methods as Mainstream Methodology. An In-
troduction. In: H. Snee, C. Hine, Y. Morey, S. Roberts,
& H. Watson (Hrsg.), Digital Methods for Social Sci-
ence. An Interdisciplinary Guide to Research Innova-
tion; S. 1–11. Palgrave Macmillan UK, 2016.
https://doi.org/10.1057/9781137453662_1

[3] Deutsche Forschungsgemeinschaft. Digitaler Wan-
del in den Wissenschaften. Impulspapier, 2020.
https://doi.org/10.5281/zenodo.4191345

[4] Jannidis, F.: Grundbegriffe des Programmierens In:
Ders., Kohle, H., & Rehbein, M. (Hrsg.). Digital Huma-
nities. Eine Einführung. Metzler, 2017, 68-95.

[5] Seufert, S., Mayr, P. Blended Learning. In: Fachlexi-
kon e-learning. Wegweiser durch das e-Vokabular.
Bonn, 2002.

[6] Schoop, E., Bukvova, H., Lieske, C. Blended-Learning
arrangements for higher education in the changing
knowledge society. In: Proceedings of the Interna-
tional Conference on Current Issues in Management
of Business and Society Development, 2010.
https://nbn-resolving.org/urn:nbn:de:bsz:14-qu-
cosa-26183

[7] Kerres, M. Mediendidaktik Konzeption und Entwick-
lung mediengestützter Lernangebote. München:
Oldenbourg Wissenschaftsverlag, 2013.
https://doi.org/10.1524/9783486736038

[8] Loes, Chad N. The Effect of Collaborative Learning on
Academic Motivation. In: Teaching & Learning In-
quiry 10(1), 2022.
https://doi.org/10.20343/teachlearninqu.10.4

[9] Haaranen, L. Programming as a Performance. Live-
streaming and Its Implications for Computer Science
Education. In: ITiCSE '17: Proceedings of the 2017
ACM Conference on Innovation and Technology in
Computer Science Education. June 2017, S. 353-358.
https://doi.org/10.1145/3059009.3059035

[10] Pirker, J., Steinmaurer, A & Karakas, A. Beyond Gam-
ing. The Potential of Twitch for Online Learning and
Teaching, In: 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1
(ITiCSE 2021), 2021, S. 74-80.
https://doi.org/10.1145/3430665.3456324

[11] Koulouri, T., Lauria, S., & Macredie, R. D. Teaching In-
troductory Programming. A Quantitative Evaluation
of Different Approaches, ACM Transactions on Com-
puting Education, 2015, 14 (4), S. 1-28.
https://doi.org/10.1145/2662412

[12] Beck, L., & Chizhik, A. Cooperative learning instruc-
tional methods for CS1. Design, implementation, and
evaluation, ACM Transactions on Computing Educa-
tion, 13(3), 2013, 10:1-10:21.
https://doi.org/10.1145/2492686

[13] Braught, G., Wahls, T., & Eby, L. M. The Case for Pair
Programming in the Computer Science Classroom.
ACM Transactions on Computing Education, 11(1),
2011, 2:1-2:21.
https://doi.org/10.1145/1921607.1921609

Fig. 9: Combination of markdown cell (exercise description) and (executed) code cell in JupyterLab.

