

Lessons Learned 3, 1 (2023)
Eingereicht am: 16.10.2022
Angenommen: 08.05.2023
DOI: https://doi.org/10.25369/ll.v3i1.63
ISSN: 2749-1293 (Print); 2749-1307 (Online)

Lessons Learned | Volume 3 (2022) | Issue 1 3-1/6-1

Concurrent Engineering Software Tools – A Trade-Off for
efficient Learning in Blended Teaching Scenarios

C. Bach*, C. Drobny, M. Tajmar

Professur für Raumfahrtsysteme, Institut für Luft- und Raumfahrttechnik, Fakultät Maschinenwesen, TU Dresden

Abstract

Concurrent engineering is an approach to the development of complex systems that is charac-
terised by direct communication between the disciplines involved. Key to this approach is the
access to the most current design data by all participants at all times. This can be done via a
dedicated software solution, for which both commercial and open-source software tools are
available. How these tools influence the outcome of the class itself, has been discussed exten-
sively in a separate publication.
This contribution presents the experience that we gathered with different concurrent engineer-
ing software tools. The aim of this contribution is to offer other teachers and students some
guideline for selecting a concurrent engineering software solution and implementing it in course
work, in a way that using the tool itself does not become the central learning challenge of the
course. The results might be of interest beyond university courses, as some requirements, like
short times to get familiar with the software or certain interface requirements, also apply to
other environments in research and development.

Concurrent Engineering ist ein Ansatz zur Entwicklung komplexer Systeme, der sich durch di-
rekte Kommunikation zwischen den beteiligten Disziplinen auszeichnet. Der Schlüssel zu diesem
Ansatz ist der Zugang zu den aktuellsten Konstruktionsdaten für alle Beteiligten zu jeder Zeit.
Dies kann über eine spezielle Softwarelösung erfolgen, für die sowohl kommerzielle als auch
Open-Source-Softwaretools zur Verfügung stehen. Wie diese Werkzeuge das Ergebnis des Kur-
ses selbst beeinflussen, wurde in einer separaten Veröffentlichung ausführlich erörtert.
In diesem Beitrag werden die Erfahrungen vorgestellt, die wir mit verschiedenen Softwaretools
für das Concurrent Engineering gesammelt haben. Ziel dieses Beitrags ist es, anderen Lehren-
den und Studierenden einen Leitfaden für die Auswahl einer Softwarelösung für das Concurrent
Engineering und deren Implementierung in die Lehrveranstaltung an die Hand zu geben, und
zwar so, dass die Verwendung des Tools selbst nicht zur zentralen Lernherausforderung der
Lehrveranstaltung wird. Die Ergebnisse könnten auch jenseits von Universitätskursen von Inte-
resse sein, da einige Anforderungen, wie z.B. kurze Einarbeitungszeiten in die Software oder
bestimmte Schnittstellenanforderungen, auch für andere Umgebungen in Forschung und Ent-
wicklung gelten.

*Corresponding author: christian.bach1@tu-dresden.de

https://doi.org/10.25369/ll.v3i1.63
mailto:christian.bach1@tu-dresden.de

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

3-1/6-2 Lessons Learned | Volume 3 (2022) | Issue 1

Acronyms / Abbreviations

CDF Concurrent Design Facility
CDP Concurrent Design Platform
CE Concurrent Engineering
DLR German Space Agency
ECSS European Corporation for Space Stand-

ardisation
ESA European Space Agency
EWM Engineering Workflow Manager
IBM International Business Machines Corpo-

ration
MBSE Model Based Systems Engineering
OCDT Open Concurrent Design Tool
TUD Technische Universität Dresden

1. Introduction

Concurrent engineering (CE) is an approach to
the development of space systems and mis-
sion. It is characterised by the direct communi-
cation between subsystems and parallel work-
ing of the involved disciplines. Learning this in-
teraction and understanding how the different
subsystems are connected to each other (i.e.
which interfaces there are and which in- and
outputs have to be transmitted) might be just
as important for students as learning about
the individual specialised disciplines (e.g. pro-
pulsion, thermal, communication). At Tech-
nische Universität Dresden (TUD), students
can learn this process by participation in stu-
dent projects like the development of CubeSat
missions or the development of experimental
sounding rockets rocket. Furthermore, for en-
gineering students in aerospace, there is also
a dedicated course to introduce them to the CE
philosophy [1] .

The CE process implementation is usually
done with a dedicated infrastructure, which in-
volves hard- and software. The latter is nowa-
days represented by a multitude of tools, in-
cluding commercial and open-source solu-
tions. This contribution presents our experi-
ence with a selection of the available software
tools. The aim of this contribution is to offer
other teachers and students some guideline
for selecting a concurrent engineering soft-
ware solution and implementing it in course
work, in a way that using the tool itself does

not become the central learning challenge of
the course.

A detailed overview of the educational aspects
of the non-centralized course structure have
been discussed extensively in a previous pub-
lication [1]. There, advantages and challenges
of the course structure but also feedback pro-
vided by the participants of the study itself are
discussed and evaluated. However, technical
considerations of the used tools itself are
mostly neglected.

This technical focus shall be discussed in more
detail in this contribution. Therefore, following
a summary of the software requirements in
section 3, the tools will be described in section
4. The actual trade-off will be executed in sec-
tion 5, before concluding the paper in section
6. Yet before, section 2 will present the educa-
tional framework of this analysis.

2. Educational Framework

The course "Spacecraft Design" is embedded
in the specialisation module Space Systems En-
gineering of the diploma programme Mechan-
ical Engineering, specialisation Aerospace En-
gineering, and now regularly takes place in the
8th semester. This course is one of two courses
of the aforementioned module and is com-
pleted by a written report for examination. [1]

The students have already acquired detailed
knowledge of the design of space systems in
courses such as "Energy Systems for Space-
craft" or "Space Propulsion". The course com-
bines the students' knowledge from all previ-
ous courses and showcases the high complex-
ity and dependency of vastly different aspects
when designing a space mission. The overall
learning objectives of the course can be sum-
marised as follows:
• By establishing criteria, weighting them

and performing a trade-off, students can
comparatively evaluate concepts for space
missions to find the solution approach with
the highest probability of success.

• By practically applying and combining the
knowledge gained in the previous courses,
students will be able to conceptualise
space missions to develop an overall sys-
tem to solve a specific engineering prob-
lem.

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

Lessons Learned | Volume 3 (2022) | Issue 1 3-1/6-3

• By getting to know their characteristics as
well as advantages and disadvantages, the
students know different strategies and
models for the development of technical
systems and are able to classify and assess
them in order to apply them in a targeted
and justified manner.

At the beginning of the course, the character-
istics as well as advantages and disadvantages
of design processes are taught. Special focus is
put on concurrent engineering. In addition, an
introduction to the utilised CE software is
given. The remaining time is used to carry out
a concurrent engineering process for the con-
ceptual design of a space system (e.g. a Mars
probe, a Moon rover, or a sounding rocket). For
this purpose, a mission objective is issued by
the teachers, who then assume the role of the
customer/client for the rest of the course. The
mission is first discussed by the students and
initial solution concepts are postulated, which
are then evaluated. The students inscribe
themselves for different roles/disciplines. Each
discipline develops the corresponding subsys-
tem (e.g. for energy supply or communication)
or carries out the tasks belonging to the corre-
sponding role (e.g. cost or risk analysis).

Until 2020, the course was held as a block
course in a computer lab on three complete
days, spread over a period of eight days. After-
wards, the course was transferred into a re-
mote virtual format, which became necessary
due to the restrictions associated with the
COVID-19 pandemic. The core of the restruc-
turing was the stretching of the course over
the entire semester. The portfolio of utilised
methods included screencasts to teach the ba-
sics at the beginning of the course, shifting the
actual elaboration to self-study, and regular
live consultations with short presentations by
the students. With lower restrictions in the
past semester, the course was adapted to a
blended teaching version of this course, com-
bining aspects from both previous versions:
The course is still stretched over the entire se-
mester, which allows a better focus of the stu-
dents to the task at hand, be it the exchange of
information during meetings, or the develop-
ment of the responsible subsystem in between
the meetings. For the introduction of the
course, the available digital course material

was utilized, but the consultation meetings
were held in person at the institute, allowing
for a much-improved room for open discus-
sions to push the state of the design.

3. Basic Software Requirements

Designing any system with a certain complex-
ity is usually not a straightforward process.
This is particularly the case for space missions,
due to the subsystem experts that may often
be very disconnected from each other, both in
terms of perspective and physical space.
Therefore, a design process requires thorough
and rigorous documentation. Appropriate
software tools shall support data exchange
and guarantee data consistency for everyone.
Furthermore, it shall guarantee that the cor-
rect information is shared by a standardized
definition of objects in the tool, since different
subsystems may have vastly different ways of
expressing their particular information.

In our course, the students shall experience
the concurrent design approach in a first-hand
manner, to learn the advantages and
strengths, but also get to know limitations and
challenges. For this, they shall get to know spe-
cific tools that may support a concurrent engi-
neering approach and understand, how this
can influence the approach on designing itself.
The technical results of the design task itself is
only of secondary relevance.

Consequently, the aspects to evaluate possible
tools may vary significantly to any industrial or
research-oriented approach. For instance,
good accessibility and easy implementation of
the tool are important, as we may not have a
dedicated facility available and in times of re-
mote teaching, students have to have access to
the tool from their own personal computer.
Since the tool itself is only one part of the
course and utilisation of the tool shall not be-
come the main learning challenge, it should be
quite intuitive and not require extensive teach-
ing and learning in order to get started. The
fact needs to be respected that the students
are neither experienced in the design ap-
proach itself, nor experts in the subsystem
they will represent during the study, making it
stressful to tackle too many unknown aspects
at once.

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

3-1/6-4 Lessons Learned | Volume 3 (2022) | Issue 1

Since the technical result of the study is only of
secondary importance, the level of details of
any information stored may not be decisive,
same with the level of complexity, as it is not
expected to have too many finalized intercon-
nections between the subsystems. Rather, the
system should feature possibilities to define
direct relationships between parameters that
can be automatically computed, since this can
highly benefit the design approach.

4. Concurrent Engineering Tools

Numerous tools to aid the concurrent design
process are available. The tools tested here
were chosen due to previous experience with
them from workshops, projects or similar us-
age. This list is not meant to be a complete
overview of all software tools that could be uti-
lised, but represents the tools that we actually
investigated both theoretically (IBM Rhapsody
and OCDT) and practically (Rhea CDP and
Valispace). Note that further tools are being
used in concurrent design facilities (CDF), such
as the Virtual Satellite [2] tool used at the Ger-
man space agency (DLR) or the tool Poseidon
developed by NASA [3].

Valispace

Valispace is a German-Portuguese start-up [4]
that uses a browser-based web-interface to ac-
cess a central database (so-called single source
of truth) in which the actual design is stored
and advanced. Depending on the chosen li-
cense, this can be either a cloud-based data-
base or a distribution on a local server. The da-
tabase can be accessed by any user at any time
from any browser system, which guarantees
wide compatibility and low software require-
ments. However, this can also be a challenge
due to the wide range of available browser
types and active browser versions.

The major goal of Valispace is the development
of a design tool to allow “real time collabora-
tion inside and across teams, even with suppli-
ers and customers”[4]. It is designed to sup-
port any level of design ranging from early con-
cept studies “through detailed design up to
testing and documentation” [4], including a
livid requirement engineering.

The design itself is based in a so-called product
tree, which is a hierarchic representation of
components and subcomponents with its rep-
resenting parameters (so called Valis) that de-
fine the component (see Figure 1).

Fig. 1: Screenshot of the Web-Interface of Valispace in the "Components" Section. On the left-hand side, the prod-
uct tree with the implemented components and their hierarchic structure is shown. On the central and right-hand
side, Valis (details) to the selected Component ("Cabin") are shown. [5]

Valis can be dependent of each other, allowing
automated calculations as well as budgets

over different layers of the component struc-
ture. This allows, for instance, quick and easy

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

Lessons Learned | Volume 3 (2022) | Issue 1 3-1/6-5

parametric studies when varying single param-
eters.

Furthermore, Valispace allows the implemen-
tation of alternatives of components that can
be conveniently switched in between, for in-
stance implementing different engines in a
rocket. In addition to that, modes can be de-
fined allowing the definition of the system at
different states of the mission, for instance fol-
lowing the multistage behaviour of a rocket
during ascent. Any change by any user will au-
tomatically be updated to anyone else access-
ing the database, allowing close-to real time
changes in the model and exchange of data.

Valispace also has implemented numerous
quality-of-life-features, including a complete
unit implementation, that is able to handle and
interchange many different unit systems, also
including non-SI-units. Furthermore, a history
graph for any parameter allows to follow the
evolution of the parameter value over time.
Datasets can be implemented to allow for de-
fined interpolation of input values. Also, a gen-
eral network of interactions between parame-
ters can be plotted.

Many more features have been implemented
in Valispace that revolve around the product
tree and allow for a more convenient design
procedure. All these features are able to link to
a certain component or parameter in the prod-
uct tree, so that it can always be up to date. For
instance, the Analysis tool, in which data can
be prepared in a document style, including au-
tomatically updated tables, graphs and budget
lists that can be implemented in reports. There
is also a simulation tool that allows for more
complex calculations with multiple output pa-
rameters. Finally, there is an extensive tool to
manage requirements, which can be automat-
ically checked with multiple expressions
against parameters of the product tree. Test
necessities, procedures, protocols and results
can be easily requested and stored accord-
ingly.

Although featuring all these capabilities,
Valispace strives to be lean in its user interface
and intuitive to understand and use. Short in-
troductions to the tool proved to be sufficient
for students to get a grip of its functionality
and start designing. The tutorial, that is availa-
ble at the website [6], allows to get started in a

rather short time. This allows for easy and con-
venient access for any user, which may be in
particular beneficial for the unexperienced
user.

Rhea CDP

The Concurrent Design Platform (CDP) by Rhea
[7] is a detailed design tool with high focus on
implementation of space standards like the
ECSS-E-TM-10-25A [8]. Here, we want to share
our experience with mainly the CDP3.12 as
well as the CDP4 version. However, please
note that the tool has since been developed
further and seen several releases, and is now
available under the name “Comet”.

CDP is a standalone program that has to be in-
stalled first. It may require a certain Excel Ver-
sion for some functionalities. In addition to
that, a server routing may be necessary to
open up a dedicated central database for the
design itself. Some knowledge about server
setup may be required. However, one can eas-
ily connect to any project one has access to,
once everything is set up accordingly.

One unique aspect of the tool is the design
procedure, which avoids real time changes in
favour of a discrete approach of forwarding
changes. If a user adds a parameter or changes
the value of any existing parameter, these
changes are stored in a dedicated routine. Alt-
hough any user may see indications that
changes have been done to a certain parame-
ter, these are not activated right away. A user
with a higher level of authority, for instance the
team leader of the study, has to manually pub-
lish these changes so that it may be live in the
actual design. Although this may seem like a
highly inconvenient feature at first, it signifi-
cantly reduces the continuous noise of
changes occurring in the earliest design
phases. This lowers the risk of potential perfor-
mance issues of the tool, since it does not re-
quire permanent updating. Also, a very high
number of additions and changes may only be
expected during the initial phase, in which fast
publishing may neglect any problems occur-
ring. In later stages of a design, changes mainly
update initial values, in which the exact value
may not be critical for other components, as
long as they are connected accordingly. In any
case, this design procedure requires additional

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

3-1/6-6 Lessons Learned | Volume 3 (2022) | Issue 1

tasks and communication, which can nega-
tively affect the development process, particu-
larly in a setting with students that are first-
time users of the software.

In addition to this discrete publishing ap-
proach, another level of setpoints can be used,
being iterations. Here, a user with higher level

of authority may set an iteration setpoint that
basically copies the current design and freezes
its status. These iteration setpoints may be
used to analyse the evolution of certain pa-
rameters over the course of the study to ana-
lyse certain converging behaviour of the de-
sign.

Fig. 2: Working Space inside the Rhea CDP. Shown is the element definition workspace in the tree-list decomposi-
tion view for the Model Catalogue (left) and the Study Model (right). [9]

The design itself is stored in a product tree that
consists of components and subcomponents
with dedicated parameters. Latter are defined
in large detail. Furthermore, a strict ownership
is established that defines who will be able to
adjust a certain parameter, depending on who
created it, respectively how it was defined ini-
tially. These aspects can make it very difficult
for a new user to quickly get into creating ob-
jects and generating content. However, once
getting used to this technique and understand-
ing the important aspects, it is easy to very
clearly define all aspects of any parameter,
which makes it easier to later bundle different
parameters all over the product tree into de-
tailed budgets and overviews. This is further
supported by a model catalogue, which allows
the reuse of predefined components over mul-
tiple studies.

Although the CDP can be used for any concur-
rent design approach, it has a defined focus on

space mission design. This stems from the im-
plementation of various space standards like
the ECSS-E-TM-10-25A [8]. In this standard,
best practices for software aided design of
space missions are comprised, defining no-
menclature as well as data storage in order to
enable compatibility between different tools.

Finally, the CDP has an interface to Excel, allow-
ing the implementation of more complex cal-
culations into the design. Therefore, the entire
product tree will be exported and linked to an
Excel file, which can be updated in both direc-
tions to publish changes accordingly. Complex
budget calculations, pre-defined graphics as
well as calculations can be conducted and ex-
changed respectively.

IBM Rhapsody

From the tools discussed in this paper, IBM
Rhapsody [10] may be the one with the fewest
correlations to space mission design, as it is
developed as a general model-based system

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

Lessons Learned | Volume 3 (2022) | Issue 1 3-1/6-7

engineering (MBSE) tool for any application.
Still, it provides many interesting features to
enable the concurrent design approach. In our
evaluation, SysML is used as modelling lan-
guage.

Rhapsody itself is a standalone programme to
be installed on one’s device, which references
itself to a file either on the computer or on a
cloud. In order to enable concurrent engineer-
ing in a team of multiple users, additional soft-
ware is required, e.g. the Engineering Work-
flow Manager (EWM), which can be set up to
allow somewhat simultaneous work at the pro-
ject. However, no actual real-time changes are
shared but rather parts of the model are
changed by the user in a local copy and after-
wards uploaded to the common stream of
data for everyone to see. From the university
perspective, Rhapsody might be very interest-
ing due to its educational support for educa-

tors and students. It is part of the academia in-
itiative by IBM, making it highly accessible for
educational purposes.

The general idea of Rhapsody is to have differ-
ent types of views onto one central model,
where each view is optimized for different as-
pects of specification of the model. The central
model itself can again be represented in a
product tree, allowing an easy hierarchic struc-
ture of the major components. The different
views, also called diagrams, focus, for example,
on the structure of the subsystems, the defini-
tion and connection of requirements, the inter-
action with users, the definition of states of the
system, the definition of actions and data ex-
changed in the system and so on. Conse-
quently, an initially simple hierarchic structure
of a model gets multiple layers of complexity,
but the different diagrams keep it comprehen-
sible.

Fig. 3: Screenshot for IBM Rhapsody, showing the tree structured Model View (left) as well as the visual represen-
tation of different states of a system (Dishwasher) in an Diagram (central). [11]

Since the focus of Rhapsody is not on the guid-
ance of calculations and therefore the imple-
mentation of parametric studies, but rather on
the best possible modelized representation of
the design, the user has the possibility/task to
define any data up to the highest level of detail.

For anyone new to the programme and its im-

plementation, this may very well be over-
whelming, which can be, to the authors’ expe-
rience, a significant hurdle for anyone starting
to model in order to exchange data. On the
other hand, since much of the setup of data
may be multiple layers bellow the initial level
of the diagrams, this can make it much easier
for any spectator to get the general grasp of

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

3-1/6-8 Lessons Learned | Volume 3 (2022) | Issue 1

the structure and functionality of the model in
a top layer view.

Since the possible approaches to modelling a
system and all the options for the appearance
are vastly different, guidelines have been de-
fined for related topics to establish conven-
tions of naming and structure as well as to
guide the eye by similar layout and appear-
ance. For instance, for space mission related
topics, the “ESA SysMLProfile” guideline has
been defined by the European Space Agency
(ESA) [12]. This compendium is a guideline for
instance how to structure the model and how
to navigate in-between, or which colour code
to use, which makes it easier to access multiple

projects once you are generally familiar to the
appearance.

Overall, Rhapsody is very complex and it may
have limited support to guide the mathemati-
cal computation of a design task. However, its
strength lies in the representation of an actual
complex engineering model, down to the very
detail, while the different diagrams of the
model allow for a quick and easy overview of
the system. This way, the modelling may be
very complex, but the information that can be
stored is extensive. At the same time, the high-
est levels of the model may be very visually ap-
pealing and intuitive, to get a great overview of
the model design.

Fig. 4: Screenshot of the ESA OCDT implementation. [14]

ESA OCDT

Used in the CDF of ESA, the Open Concurrent
Design Tool (OCDT) is a client/server software
package that was developed for ESA. It shares
most commonalities with Rhea’s CDP. As CDP,
it implements a standard semantic data model
based on ECSS-E-TM-10-25. However, OCDT is
openly distributed under an ESA community
open source software licence, which allows
qualified community members not only the us-
age of the software, but also its further devel-
opment. The centre of this community is the

OCDT website[13] with a plethora of infor-
mation, on which this section is based.

The database, which is stored on a server, is
accessed via an OCDT client, which is based on
the Microsoft software Excel. Therefore, anal-
yses and calculations can be done directly in
Excel, that utilises various spreadsheets that
can be added to the workbook as needed.
Thus, the work is done locally and the data is
then shared via the OCDT interface.

This exchange of information is not done auto-
matically and therefore not instantaneously.

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

Lessons Learned | Volume 3 (2022) | Issue 1 3-1/6-9

Parameters need to be “pushed” to the data-
base by their creator, who is responsible to
keep it up to date. Users who wish to use this
parameter need to subscribe to it, which de-
fines the interrelations inside the model. After-
wards, they still need to pull the parameter to
their local Excel interface. Moreover, like in
Rhea’s CDP, the team leader or system engi-
neer needs to publish data sets after checking
the values for consistency.

Apart from that, users are free to create ele-
ments/components and attach parameters to
them. Those parameters can have advanced
characteristics, such as state or option de-
pendencies. Former are used to model system
modes or mission phases. Latter are used to
model different system options, e.g. to com-
pare an electrical with a chemical propulsion
solution and the system effects thereof.

Users who are familiar with Excel, will find a
relatively easy entrance to OCDT. Apart from
that, the common advantages and disad-
vantages of Excel apply. The open source char-
acter of the software can surely be seen bene-
ficial in terms of accessibility, particularly in the
frame of teaching, where the potential disad-
vantage of relying on community support
might not play a big role. Another advantage
lies in the fact that this software is used by ESA,
which can motivate students to engage more
with the software.

Tool Comparison

The tools presented here do have some fea-
tures in common, but vary in how these are ap-
plied. Other Features on the other hand are
unique for one or the other tool. One major as-
pect common for all tools is the representation
of the design in a product tree. This hierarchic
structure is the baseline for storing the design.
For Valispace, OCDT as well as for CDP the use
of the product tree is the baseline for under-
standing the system and is used to navigate
through the design to ad or extract infor-
mation. With Rhapsody on the other hand, the
diagrams representing views onto the product
tree are a fundamental feature allowing a
much more sophisticated understanding of
the design of the model. Depending on the de-
sign philosophy used for the model as well as
personal preferences, many tasks of the work
can be achieved only in those diagrams.

Significant for engineering work is the handling
of units. In particular for space mission, due to
the international character of the industry with
its numerous preferences in units as of today
and even more so in the past. Although all
tools allow a definition of units, Valispace is the
only one able to compute with them conven-
iently. Units of the metric as well as of the im-
perial system can be added without problem,
and once used in formulas are automatically
converted. In addition to that, calculations will
return error messages if the units are not com-
patible with in itself. This is great, as it allows
the engineer to focus on designing the system,
and not care about conversion factors and
rules. Although basic unit conversion may be
implemented for other tools as well, it is by for
not as convenient as with Valispace.

An interesting aspect of the design may be the
time resolved evolution of parameters over
the course of the study. Valispace has here im-
plemented a historic graph for any Vali, which
shows a time resolved development. In the
CDP, the evolution of objects may be plotted
over several iteration steps. These iteration
steps can at the same time also be used as
“Save points” of the design, to which one could
always could go back, for instance when decid-
ing to go into a different direction with the de-
sign or if the design itself may be corrupted.
Also, this allows a view onto the design to a cer-
tain point in time, which may be beneficial for
any review process. A similar feature can be
used in the EWM with Rhapsody, where Base-
lines and Snapshots can be defined. For the
OCDT, a version history may be achieved by
simply copying the file on the system.

The main objective of our course is to get
hands on experience to the concurrent engi-
neering process, so the tools have to compare
on how they support this aspect. With
Valispace, all users access the same Database,
and changes are redirected in real time to any
other user accessing the database. Therefore,
fast and direct exchange is possible. With CDP,
Rhapsody and OCDT, the approach is some-
what more streamlined. While in CDP and
OCDT the changes have to be published by a
user, in Rhapsody (using EWM) the certain part
of the model containing changes has to be up-
loaded. This upload may generate conflicts

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

3-1/6-10 Lessons Learned | Volume 3 (2022) | Issue 1

that have to be resolved. Even though this ap-
proach may be a bit slower, it significantly re-
duces noise to the user, and allows for an eas-
ier performance optimisation of the tool.

File repositories are common for all tools. For
Valispace there is also a discussion function
connected to Valis itself, including notifications
once a Vali is updated, keeping discussion lim-
ited to users concerning a certain Vali and sav-
ing these discussions for later references.

Analogue tools

All tools presented here have great advantages
for particular areas supporting the concurrent
design process. However, the tool needs to be
intuitive and easy to learn in order to be used
by the students in the academic scenario pre-
sented. If the software is to complex, students
will fall back to familiar alternatives. We ob-
served that students will avoid the software in-
terface and rather share disconnected infor-
mation by noting it on a common board in the
room or facility they are in.

For a course in presence, this may be an option
since everyone is working at the same time
and means of exchange and communication
can be very short. And indeed, we normally
started of our courses with a discussion about
the general concept idea together on a white-
board. And even at later stages of the study,
this became a pivotal point for the evolution of
the design. For general and basic designs, this
may be a valid option, since students don’t
have to get acquainted with a new tool and can
focus solely on the design of the respective
subsystem they are responsible for and its in-
teraction with other subsystems/disciplines.

However, since the design will get complex by
itself in no time, it would quickly get unor-
ganized. In addition to that, for any non-cen-
tralized design study over a longer period of
time, this cannot be an option.

Nevertheless, we wanted to include this op-
tion, as some people might find it favourable
in their conditions, where they might have no
time to introduce a dedicated software or the
means to effectively utilise one. While this op-
tion surely has rather narrow limitations, it re-
mains a viable option if the software utilisation
itself is not one of the learning objectives.

When students of our course avoided the soft-
ware, we didn’t enforce its use. The CD meth-
odology could still be learned well up to a cer-
tain model complexity.

5. Trade-Off

The following trade-off will particularly focus
on the utilisation of described tools within the
scope of course work at universities, as this en-
tails special requirements and boundary con-
ditions, which might not apply to other envi-
ronments, such as the industrial utilisation of
CE. Within this trade-off, we summarise our ex-
perience with and assessment of the tools.
This means that we didn’t conduct this trade-
off a priori and then implemented the most
promising solution into our course, but we ac-
tually tested different options to see what
works and what not.

Evaluation Criteria

This section contains the selection of the eval-
uation criteria for the trade-off with a short de-
scription of each criterion to clarify what it rep-
resents and how it is assessed. The following
criteria will be used:
Usability: A key factor for using a CE software in
a course is the time the students need to make
use of it, as there is only limited time available.
Therefore, the software should be easy to un-
derstand in its basics, but not necessarily in its
full potential. This includes the availability of
freely accessible manuals and tutorials.
Complexity: While enabling very complex mod-
els is surely a key aspect for most CE users, it
is of secondary concern for the use in an edu-
cational framework. However, it is still im-
portant to consider. A less complex software
could prove beneficial for the course work.
However, it would be even better if the soft-
ware provides complexity, allowing interested
students to dig deeper, but not unleashing the
full complexity all at once at the new user.

Interface: Aside from the usability and com-
plexity, the design of the user interface also
plays an important role, as it defines how the
user interacts with the software. While some
tools rely on the use of Excel as an interface,
other software use browser-based interfaces.
While it is clear that the borders to usability
and complexity are fluent, this criterion shall

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

Lessons Learned | Volume 3 (2022) | Issue 1 3-1/6-11

put focus on how easily, or better naturally, the
user can engage with the software.

Performance: Another criterion is the soft-
ware’s performance. Not only too much com-
plexity or a bad user interface can turn the stu-
dent away from the screen, also performance
issues can. We experienced that, as soon there
were problems with the stability of the soft-
ware or serious latency in the data synchroni-
sation, the acceptance drops. Thus, the soft-
ware and its implementation in the hardware
must ensure not the highest, but flawless per-
formance for a representative user group.

Manageability: This criterion represents the ad-
ministrational effort for the lecturers, which
themselves have limited time and want to put
as much focus as possible on the students and
their learning processes. Still, they have to set
up the software and take care of any trouble-
shooting along the way. Therefore, this crite-
rion highlights the knowledge that is needed
and how much effort it takes to get and keep
the software running.

Next to these five criteria (usability, complex-
ity, interface, performance and manageability)
the analysis could be extended by further as-
pects. This could involve the supported inter-
faces for the implementation of further soft-
ware solutions (such as design and simulation
software). However, we consider this very
user-specific and thus did choose not to in-
clude it.

Another aspect might be the requirements of
the software towards the hardware infrastruc-
ture. We didn’t include this as the options we
consider in this work don’t show significant dif-
ferences that would allow a meaningful differ-
entiation.

Moreover, some might consider available li-
censes and corresponding prices important.
While we agree, we excluded this point as eve-
ryone will have their own threshold and prices
change frequently.

Lastly, one might consider how widely the dif-
ferent software tools are used within a certain
domain. Clearly, learning the utilisation of a
more commonly used software would overall
have a higher impact on the students than little
known software. Nevertheless, this can also
change over time and the level of expertise the
students can gain on any software solution

during the course is rather limited. We also in-
vite the students to check out other tools out-
side the course to find their own preference.

The five criteria presented are all significant in
their very own aspect, which concludes that
the failure to fulfil any one of these may have
severe influence on the usage by the students
participating at the course. Therefore, it was
decided to not add any additional weighting
factors on these evaluation criteria.

Evaluation

Due to the limited time available during our
course, easy accessibility of the functionality of
the tool is of significant importance. Since
most students are fairly firm with basic Excel
operations, it does not take long to get the
hang of the OCDT tool. It is easy to start and
available on most PCs.
The availability of a browser for Valispace is
even more so given to any user, making it very
accessible. However, some time to understand
the setup of the tool is required to get the prin-
cipal idea. Still, the tool is kept rather simple
and intuitive, and catching the tutorials availa-
ble will only take a few hours and has proven
to be well suited to get started.
For CDP and Rhapsody, additional software
has to be installed. Once this one is covered, it
may seem to be challenging for beginners to
get used to the tools, due to its very detailed
options available. With both tools, significant
time has to be invested to understand how in-
formation is created and connected, to be
stored in the model. From our experience, the
level of expertise and therefore the level of us-
age will differ much stronger for the CDP and
Rhapsody than for Valispace and OCDT, simply
due to the different background and interest
of the students. This higher difference makes
it more challenging for the tool to be actually
used for exchange between the students in the
course.
The OCDT, Valispace as well as CDP are de-
signed to aid the design of space related mis-
sions. Although other studies may also be con-
ducted, numerous features are implemented
to supporting this general field of study, includ-
ing for instance the handling of units. For new
users, this can be quite an important feature to
guide the addition of information. Further-
more, a well-known or intuitive interface will
also be beneficial for starters.

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

3-1/6-12 Lessons Learned | Volume 3 (2022) | Issue 1

Guiding the user step by step to add more in-
formation is best implemented in Valispace,
where only basic information needs to be de-
fined initially, but more detailed parameters
can be added at a later point in time. Although
updating of parameters is also feasible with
CDP and Rhapsody, the user will be confronted
with these parameters already at the initial
definition of an object, which results into a
much slower process of adding information
and more hesitance by the students. In partic-
ular with Rhapsody, many information has to
be added up front, but an experienced user
may be able to present this information visu-
ally very appealing as well as sorted, using dif-
ferent types of diagrams.

In the description of the tools, we distin-
guished the functionality of updating the
model. Naturally, Excel comes to its limits once
a system gets more complex and will conse-
quently take more time to update. Similar chal-
lenges have been observed using Valispace,
since changing a single parameter can result in
the update of a multitude of parameters,
which may be resourceful and take more and
more time with increasing model complexity.

For the CDP, the model will only be updated by
a top-level user. This makes the system more
discrete, but also requires less data to be ex-
changed continuously, improving the perfor-
mance significantly. For Rhapsody, the aspect
for downloading a recent part of the model
und uploading it again to the cloud can be a
nuisance, in particular when starting from a
blank slate and many changes by many differ-
ent users are to be expected.

From the educators’ point of view, the setup of
the tools is similar for all options, since respec-
tive accounts/access rules have to be added
with all of them. However, making use of
widely available access points like Excel for the
OCDT and a browser for Valispace makes for
much more flexibility in planning the courses
and allowing the students to work from home.
In the end, installing additional software and
setting up the respective server for data ex-
change has always to be respected as a certain
time factor.

A basic evaluation of the criteria’s is summa-
rized in table 1, which provides a general over-
view of the viability of these softwares for the

requirements discussed initially. For the evalu-
ation, a simple grading system of [++, +, 0, -, --]
was used, were [++] represents the best imple-
mentation of the criteria, and [--] the worst.

Since the requirements imposed on the tool
will drastically influence the results of the eval-
uation, no summation of our grades is in-
cluded and the reader is invited to adapt the
evaluation to their individual requirements
and setting. The grades presented shall be un-
derstood as indications for a single semester
course at university level.

Tab. 1: Evaluation of software tools for the dis-
cussed criterias, based on the requirements im-
posed by the course structure

 Vali-
space CDP Rhap-

sody
OCDT

Usability ++ 0 -- +

Complexity + + -- 0

Interface ++ 0 - +

Performance - ++ + +

Manageability + + - 0

6. Conclusion

Multiple tools have been used by the authors
to conduct concurrent design studies in a uni-
versity level course with students. The authors’
experience with the software tools is obviously
limited, and experienced users may be able to
cover many more tasks with the dedicated
tools. After all, the authors want to encourage
any reader to at least give these tools a try,
since they all are very capable and powerful in
their very own way. Furthermore, the tools are
under constant development, which means
that certain aspects may have already changed
since their evaluation.

For the course at hand, the software imple-
mentation by Valispace is our preferred solu-
tion as of right now. The tool grants easy ac-
cess and requires only a minimum of initial
training, which also can be self-taught with the
available tutorials, to enable students to work
with the tool and start designing. Since the re-
sults of our design is not the main priority and
the design itself will not get as complex, we can
respect possible limitations quite well. Addi-
tional tools like time management and the im-
plemented requirement management and the

C. Bach et al. / Concurrent Engineering Software Tools – A Trade-Off for efficient Learning …

Lessons Learned | Volume 3 (2022) | Issue 1 3-1/6-13

reporting tool are additional benefits for our
course. From our experience, the tool pro-
vided the best introduction to the general con-
current engineering approach for the stu-
dents, and resulted in the greatest amount of
data shared with such a tool.

Acknowledgements

We would like to thank all participating stu-
dents for their adaptability, commitment, un-
derstanding and feedback.

Literature

[1] C. Bach, C. Drobny, T. Schmiel, and M. Tajmar,

“Remote Concurrent Engineering from the
customer’s perspective,” Lessons Learn. 1, 2021.

[2] “Virtual Satellite Download Page.” [Online]. Available:
https://dasclab.eu/virsat/.

[3] B. Wickizer, T. Snyder, J. DiCorcia, R. Evans, R. Burton,
and D. Mauro, “A New Concurrent Engineering Tool
for the Mission Design Center at NASA Ames
Research Center,” in 2021 IEEE Aerospace
Conference (50100), 2021, pp. 1–12.

[4] “Valispace Website.” [Online]. Available:
https://www.valispace.com/.

[5] “Valispace Help Desk.” [Online]. Available:
https://docs.valispace.com/vhd/Components-
Module.1505230901.html.

[6] “Valispace Tutorial.” [Online]. Available:
https://docs.valispace.com/vhd/Fan-
Tutorials.1512243215.html.

[7] “RHEA CDP Website.” [Online]. Available:
https://www.rheagroup.com/services-
solutions/system-engineering/concurrent-design/.

[8] E.-E. ECSS Secretariat, [ECSS-E-TM-E-10-25A] Space
Engineering - Engineering design model data
exchange (CDF), First Issu. ESA Requirements and
Standards Division, 2010.

[9] A. Mincolla, “Space Systems of Systems Generative
Design Using Concurrent MBSE,” Stoockholm,
Sweden, 2020.

[10] “IBM Rhapsody Website.” [Online]. Available:
https://www.ibm.com/products/systems-design-
rhapsody.

[11] “IBM Webpage.” [Online]. Available:
https://www.ibm.com/de-de/products/uml-tools.

[12] M. Kretzenbacher, “Generic ESA SysML Metamodel
and Toolbox for Space Systems Modelling [EUCL-
EST-TN-1-014],” 2017.

[13] “OCDT Website.” [Online]. Available:
https://ocdt.esa.int/.

[14] H. P. de Koning, “Experiences from Developing
COncurrent Multi-Disciplinary MBSE,” Noordwijk,
The Netherlands, 2015.

