The use of phosphorescence micromaterials for commercial textile products

Authors

  • Boris Mahltig Hochschule Niederrhein, Faculty of Textile- and Clothing Technology, Mönchengladbach, Germany https://orcid.org/0000-0002-2240-5581
  • Clara Heil Hochschule Niederrhein, Faculty of Textile- and Clothing Technology, Mönchengladbach, Germany
  • Sarah Kaub Hochschule Niederrhein, Faculty of Textile- and Clothing Technology, Mönchengladbach, Germany
  • Jaydip Nareshbhai Kapadiya Hochschule Niederrhein, Faculty of Textile- and Clothing Technology, Mönchengladbach, Germany

DOI:

https://doi.org/10.25367/cdatp.2024.5.p1-10

Abstract

Fluorescent textile products are manifold used. Compared to fluorescent textiles, phosphorescent textile products exhibit an afterglow effect even after the illumination is stopped. Phosphorescent textiles are less present as commercial products on the market. With this background the aim of the actual presentation is to investigate the properties of commercially available phosphorescent textile materials. Investigations are performed by illumination under different light arrangement. Microscopy is performed by scanning electronic microscopy (SEM) and advanced light microscopy using UV light. Light emission of the samples is recorded by fluorescence spectroscopy. The chemical composition is determined by using electron dispersive spectroscopy (EDS). Depending on the type of sample, an afterglow effect can be determined up to 5 to 30 minutes after stopping the illumination with UV light. By SEM and EDS methods it is observed that the phosphorescent effects are realized by application of phosphorescent pigments, which can be best described as phosphorescent micromaterials. Depending on the product category, two different types of phosphorescent materials are used – doped strontium aluminates (SrAl2O4) and zinc sulfide (ZnS). Products based on doped strontium aluminates exhibit longer afterglow effects compared to products with ZnS pigments. However, the use of doped strontium aluminate is quite surprising for a commercial textile product, because of cost reasons. Finally, it can be stated that phosphorescent micromaterials are established materials for realization of functional textile products. These micromaterials can be found in every day products and are examples for innovative particle technology used in commercial consumer products.

References

Grancaric, A. M.; Tarbuk, A.; Botteri, L. Light conversion and scattering in UV protective textiles. AUTEX Research Journal 2014, 14, 247-258. DOI: doi.org/10.2478/aut-2014-0025.

Baatout, K.; Saad, F.; Baffoun, A.; Mahltig, B.; Kreher, D.; Jaballah, N.; Majdoub, M. Luminescent cotton fibers coated with fluorescein dye for anti-counterfeiting applications. Materials Chemistry and Physics 2019, 234, 304-310. DOI: doi.org/10.1016/j.matchemphys.2019.06.007.

Liu, M. O.; Lin, H. F.; Yang, M. C.; Lai, M. J.; Chang, C. C.; Liu, H. C.; Shiao, P.-L., Chen, I.-M. Chen, J. Y. Thermal and fluorescent properties of optical brighteners and their whitening effect for pelletization of cycloolefin copolymers. Materials Letters 2006, 60, 2132-2137. DOI: doi.org/10.1016/j.matlet.2005.12.112.

Saad, F.; Baffoun, A.; Mahltig, B.; Hamdaoui, M. Polyester Fabric with Fluorescent Properties Using Microwave Technology for Anti-Counterfeiting Applications. Journal of Fluorescence 2022, 32, 327-345. DOI: doi.org/10.1007/s10895-021-02845-7.

Dalponte, E.; Mahltig, B.; Breckenfelder, C. Luminous Textiles for UV-Protection and Light Effect Application. Book chapter. In: Textiles: Advances in Research and Applications; Mahltig, B. (Ed.), Nova Science Publishers Inc., New York, USA, 2018; pp. 167-182.

Szuster, L.; Kaźmierska, M.; Król, I. Fluorescent dyes destined for dyeing high-visibility polyester textile products. Fibres & Textiles in Eastern Europe 2004, 1, 70-75.

Mahltig, B.; Leuchtges, G.; Holstein, P. T-Shirts – an overview and comments on price range, functional materials and European production. Tekstilna Industrija 2022, 70, 4-13. DOI: 10.5937/TEKSTIND2204004M.

Mahltig, B.; Ernst, V.; Schröder, L. Exemplarily view on selected fluorescence textile products. Communications in Development and Assembling of Textile Products CDATP 2023, 4, 61-69. DOI: 10.25367/cdatp.2022.4.p61-69.

Yuan, Y.; Grethe, T.; Mahltig, B. Sol-gel coatings with the fluorescence dye Rhodamine B for the optical modification of cotton. Communications in Development and Assembling of Textile Products CDATP 2023, 4, 1-17. DOI; 10.25367/cdatp.2022.4.p1-17.

Vik, M.; Vikova, M.; Kasparova, M. Decay of Phosphorescent Warning Design on Textile Substrates. Applied Mechanics and Materials 2014, 440, 112-117. DOI: doi.org/10.4028/www.scientific.net/AMM.440.112.

Mokhtar, O. M.; Attia, Y. A.; Wassel, A. R.; Khattab, T. A. Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. Luminescence 2021, 36, 1933-1944. DOI: doi.org/10.1002/bio.4127.

Christie, R.M. Fluorescent dyes. In: Handbook of Textile and Industrial Dyeing; Clark, M. (Ed.), Woodhead Publishing, 2011; pp. 562-587. DOI: doi.org/10.1533/9780857093974.2.562.

Ahmed, E.; Maamoun, D.; Hassan, T.M.; Khattab, T.A. Development of functional glow-in-the-dark photoluminescence linen fabrics with ultraviolet sensing and shielding. Luminescence 2022, 37, 1376-1386. DOI: doi.org/10.1002/bio.4310.

Colliex, C.; Kohl, H. Elektronenmikroskopie, Wissenschaftliche Verlagsgesellschaft mbH, 2008.

Mahltig, B.; Grethe, T. High-Performance and Functional Fiber Materials — A Review of Properties, Scanning Electron Microscopy SEM and Electron Dispersive Spectroscopy EDS. Textiles 2022, 2, 209-251. DOI: doi.org/10.3390/textiles2020012.

Flesner, J.; Mahltig, B. Fibers from Natural Resources. Book chapter. In: Handbook of Composites from Renewable Materials, Volume 4 – Functionalization; Thakur, V.K.; Thakur, M.K.; Kessler, M.R. (Eds.), Scrivener Publishing Wiley, Hoboken, New Jersey, USA, 2017; pp. 287-310.

Lübbe, E. Farbempfindung, Farbbeschreibung und Farbmessung, Springer Vieweg, 2013.

Tang, J.; Guo, Y.; Xu, C. Light Pollution Effects of Illuminance on Yellowish Green Forsterite Color under CIE Standard Light Source D65. Ekoloji 2018, 27, 1181-1190.

Sayeb, S.; Debbabi, F.; Horchani-Naifer, K. Optical Characterisation of Commercial Photoluminescent Rare Earth Pigments Used in Textile Industry. Book chapter. In: International Conference of Applied Research on Textile and Materials; Mhsahli, S.; Debbadi, F. (Eds.), Springer, 2022; pp. 36-42. DOI: doi.org/10.1007/978-3-031-08842-1_8.

Khattab, T.A.; Rehan, M.; Hamdy, Y.; Shasheen, T.I. Facile Development of Photoluminescent Textile Fabric via Spray Coating of Eu(II)-Doped Strontium Aluminate. Ind. Eng. Chem. Res. 2018, 57, 11483-11492. DOI: doi.org/10.1021/acs.iecr.8b01594.

Khattab, T. A.; Fouda, M.M.G.; Abdelrahman, M.S.; Othman, S.I.; Bin-Jumah, M.; Alqarawi, M.A.; Fassam, H.A.; Allam, A.A. Development of Illuminant Glow-in-the-Dark Cotton Fabric Coated by Luminescent Composite with Antimicrobial Activity and Ultraviolet Protection. Journal of Fluorescence 2019, 29, 703-710. DOI: doi.org/10.1007/s10895-019-02384-2.

Wu, Y.; Gan, J.; Wu, X. Study on the silica-polymer hybrid coated SrAl2O4:Eu2+,Dy3+ phosphor as a photoluminescence pigment in a waterborne UV acrylic coating. Journal of Materials Research and Technology 2021, 13, 1230-1242. DOI: doi.org/10.1016/j.jmrt.2021.05.035.

Katsumata, T.; Sasajima, K.; Nabae, T.; Komuro, S.; Morikawa, T. Characteristics of Strontium Aluminate Crystals Used for Long-Duration Phosphors. J. Am. Ceram. Soc. 1998, 81, 413-416.

Ghahari, M.; Arabi, A.M. Preparation of Persisted Luminescence Pigment and Investigation in Glaze Compatibility. Prog. Color Colorants Coat. 2012, 5, 55-63.

Shafia, E.; Aghaei, A.; Davarpanah, A.; Bodaghi, M.; Tahriri, M.; Alavi, S.H. Synthesis and Characterization of SrAl2O4:Eu2+, Dy3+ Nanocrystalline Phosphorescent Pigments. Trans. Ind. Ceram. Soc. 2011, 70, 71-77.

Setlow, R.B. The Wavelengths in Sunlight Effective in Producing Skin Cancer: A Theoretical Analysis. Proc. Nat. Acad. Sci. USA 1974, 71, 3363-3366.

Yoon, J.H.; Lee, C.-S.; O´Connor, T.R.; Yasui, A.; Pfeifer, G.P. The DNA Damage Spectrum Produced by Simulated Sunlight. J. Mol. Biol. 2000, 299, 681-693. DOI: 10.1006/jmbi.2000.3771.

Böttcher, H.; Mahltig, B.; Sarsour, J.; Stegmaier, T. Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics. J. Sol-Gel Sci. Technol. 2010, 55, 177-185. DOI: doi.org/10.1007/s10971-010-2230-9.

Analysis of commercial phosphorescence textile print (here as example sample 1) – (A) overview SEM image in low magnification; (B) EDS spectrum with element analysis; (C) SEM in high magnification; (D) EDS mapping with detected chemical elements

Published

2024-01-01

How to Cite

Mahltig, B., Heil, C., Kaub, S., & Kapadiya, J. N. (2024). The use of phosphorescence micromaterials for commercial textile products. Communications in Development and Assembling of Textile Products, 5(1), 1-10. https://doi.org/10.25367/cdatp.2024.5.p1-10

Issue

Section

Peer-reviewed articles