Sandwiching textiles with FDM Printing

Authors

  • Mahmut-Sami Özev Bielefeld University of Applied Sciences
  • Andrea Ehrmann Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany https://orcid.org/0000-0003-0695-3905

DOI:

https://doi.org/10.25367/cdatp.2023.4.p88-94

Keywords:

textile fabrics, fused deposition modeling (FDM), composite, thermoplastic polyurethane (TPU), cotton, aramid

Abstract

3D printing on textile fabrics has been investigated intensively during the last years. A critical factor is the adhesion between the printed polymer and the textile fabric, limiting the potential areas of application. Especially safety-related applications, e.g. stab-resistant textile/polymer composites, need to show reliable adhesion between both components to serve their purpose. Here we investigate the possibility of sandwiching textiles between 3D-printed layers, produced by fused deposition modeling (FDM). We show that adding nubs to the lower 3D-printed layers stabilizes the inner textile fabric and suggest future constructive improvements to further enhance the textile-polymer connection.

References

Pfister, A.; Walz, U.; Laib, A.; Mülhaupt, R. Polymer Ionomers for Rapid Prototyping and Rapid Manufacturing by Means of 3D Printing. Macromol. Mater. Eng. 2005, 290, 99-113. DOI: https://doi.org/10.1002/mame.200400282.

Mitra, S.; Rodríguez de Castro, A.; El Mansori, M. On the rapid manufacturing process of functional 3D printed sand molds. J. Manufact. Proc. 2019, 42, 202-212. DOI: https://doi.org/10.1016/j.jmapro.2019.04.034.

Park, S. y.; Ko, B. J.; Lee, H. W.; So, H. Y. Rapid manufacturing of micro-drilling devices using FFF-type 3D printing technology. Sci. Rep. 2021, 11, 12179. DOI: https://doi.org/10.1038/s41598-021-91149-8.

Afshar, A.; Mihut, D. Enhancing durability of 3D printed polymer structures by metallization. J. Mater. Sci. Technol. 2020, 53, 185-191. DOI: https://doi.org/10.1016/j.jmst.2020.01.072.

Arunothayan, A. R.; Nematollahi, B.; Ranade, R.; Bong, S. H.; Sanjayan, J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials 2020, 257, 119546. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119546.

Oviedo, A. M.; Puente, A.H.; Bernal, C.; Perez, E. Mechanical evaluation of polymeric filaments and their corresponding 3D printed samples. Polymer Testing 2020, 88, 106561. DOI: https://doi.org/10.1016/j.polymertesting.2020.106561.

Sitotaw, D. B.; Muenks, D. M.; Kyosev, Y. K.; Kabish, A. K. Investigation of Parameters of Fused Deposition Modelling 3D Prints with Compression Properties. Adv. Mater. Sci. Eng. 2022, 2022, 4700723. DOI: https://doi.org/10.1155/2022/4700723.

Dong, J.; Mei, C. T.; Han, J. Q.; Lee, S. Y.; Wu, Q. L. 3D printed poly(lactic acid) composites with grafted cellulose nanofibers: Effect of nanofiber and post-fabrication annealing treatment on composite flexural properties. Additive Manufacturing 2019, 28, 621-628. DOI: https://doi.org/10.1016/j.addma.2019.06.004.

Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Liebscher, M.; Tzounis, L. Mechanical Properties of 3D-Printed Acrylonitrile-Butadiene-Styrene TiO2 and ATO Nanocomposites. Polymers 2020, 12, 1589. DOI: https://doi.org/10.3390/polym12071589.

Stepashkin, A. A.; Chukowv, D. I.; Senatov, F. S.; Salimon, A. I.; Korsunsky, A. M. Kaloshkin, S. D. 3D-printed PEEK-carbon fiber (CF) composites: structure and thermal properties. Composites Science and Technology 2018, 164, 319-326. DOI: https://doi.org/10.1016/j.compscitech.2018.05.032.

Chalgham, A.; Wickenkamp, I.; Ehrmann, A. Mechanical properties of FDM printed PLA parts before and after thermal treatment. Polymers 2021, 13, 1239. DOI: https://doi.org/10.3390/polym13081239.

Kozior, T.; Blachowicz, T.; Ehrmann, A. Adhesion of 3D printing on textile fabrics – inspiration from and for other research areas. J. Eng. Fibers Fabr. 2020, 15, 1558925020910875. DOI: https://doi.org/10.1177/1558925020910875.

Sitotaw, B.; Ahrendt, D.; Kyosev, Y.; Kabish, A. K. Additive Manufacturing and Textiles – State-of-the-Art. Appl. Sci. 2020, 10, 5033. DOI: https://doi.org/10.3390/app10155033.

Sitotaw, B.; Muenks, D.; Kyosev, Y.; Kabish, A. K. Influence of fluorocarbon treatment on the adhesion of material extrusion 3D prints on textile. J. Ind. Text. 2022, 52, 15280837221137014. DOI: https://doi.org/10.1177/15280837221137014.

Grothe, T.; Brockhagen, B.; Storck, J. L. Three-dimensional printing resin on different textile substrates using stereolithography: A proof of concept. J. Eng. Fibers Fabr. 2020, 15, 1558925020933440. DOI: https://doi.org/10.1177/1558925020933440.

Grimmelsmann, N.; Kreuziger, M.; Korger, M.; Meissner, H.; Ehrmann, A. Adhesion of 3D printed material on textile substrates. Rapid Prototyping J. 2018, 24, 166-170. DOI: https://doi.org/10.1108/RPJ-05-2016-0086.

Spahiu, T.; Al-Arabiyat, M.; Martens, Y.; Ehrmann, A.; Piperi, E.; Shehi, E. Adhesion of 3D printing polymers on textile fabrics for garment production. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 459, 012065. DOI: https://doi.org/10.1088/1757-899X/459/1/012065.

Eutionnat-Diffo, P. A.; Chen, Y.; Guan, J. P.; Cayla, A.; Campagne, C.; Zeng, X. Y.; Nierstraz, V. Stress, strain and deformation of poly-lactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process. Sci. Rep. 2019, 9, 14333. DOI: https://doi.org/10.1038/s41598-019-50832-7.

Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M. Possible Applications of 3D Printing Technology on Textile Substrates. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 141, 012011. DOI: https://doi.org/10.1088/1757-899X/141/1/012011.

Kozior, T.; Döpke, C.; Grimmelsmann, N.; Juhász Junger, I.; Ehrmann, A. Influence of fabric pretreatment on adhesion of three-dimensional printed material on textile substrates. Adv. Mech. Eng. 2018, 10, 792316. DOI: https://doi.org/10.1177/1687814018792316.

Görmer, D.; Störmer, J.; Ehrmann, A. The influence of thermal after-treatment on the adhesion of 3D prints on textile fabrics. Communications in Development and Assembling of Textile Products 2020, 1, 104-110. DOI: https://doi.org/ 10.25367/cdatp.2020.1.p104-110.

Störmer, J.; Görmer, D.; Ehrmann, A. Influence of washing and thermal post-treatment on the adhesion between 3D-printed TPU and woven fabrics. Communications in Development and Assembling of Textile Products 2021, 2, 104-110. DOI: https://doi.org/10.25367/cdatp.2021.2.p34-39.

Korger, M.; Glogowsky, A.; Sanduloff, S.; Steinem, C.; Huysman, S.; Horn, B.; Ernst, M.; Rabe, M. Testing thermoplastic elastomers selected as flexible three-dimensional printing materials for functional garment and technical textile applications. J. Eng. Fibers Fabrics 2020, 15, 1558925020924599. DOI: https://doi.org/10.1177/1558925020924599.

Richter, C.; Schmülling, S.; Ehrmann, A.; Finsterbusch, K. FDM printing of 3D forms with embedded fibrous materials. Design, Manufacturing and Mechatronics 2015, pp. 961-969. DOI: https://doi.org/10.1142/9789814730518_0112.

Fafenrot, S.; Korger, M.; Ehrmann, A. Mechanical properties of composites from textiles and three-dimensional printed materials. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, 2018.

Panneke, N.; Ehrmann, A. Stab-resistant polymers – recent developments in materials and structures. Polymers 2023, 15, 983. DOI: https://doi.org/10.3390/polym15040983.

Sitotaw, D. B.; Ahrendt, D.; Kyosev, Y.; Kabish, A. K. A review on the performance and comfort of stab protection armor. AUTEX Res. J. 2022, 22, 96-107.

Cross section of PLA sample

Published

2023-03-25

How to Cite

Özev, M.-S. ., & Ehrmann, A. (2023). Sandwiching textiles with FDM Printing. Communications in Development and Assembling of Textile Products, 4(1), 88-94. https://doi.org/10.25367/cdatp.2023.4.p88-94

Issue

Section

Peer-reviewed articles