Investigation of metallic nanoparticle distribution in PAN/magnetic nanocomposites fabricated with needleless electrospinning technique

Authors

  • Marah Trabelsi Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
  • Al Mamun Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
  • Michaela Klöcker Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
  • Lilia Sabantina FH Bielefeld

DOI:

https://doi.org/10.25367/cdatp.2021.2.p8-17

Keywords:

Needleless electrospinning, magnetic nanofibers, carbon nanocomposites, agglomerations

Abstract

Needleless electrospinning can be used to produce polyacrylonitrile nanofibres, for example, to which magnetic nanoparticles can additionally be added. Such composite nanofibres can then be stabilised and carbonised to produce carbon composite nanofibres. The magnetic nanoparticles have an influence not only on the structure but also on the mechanical and electrical properties of the finished carbon nanofibres, as does the heat treatment during stabilisation and incipient carbonisationThe present study reports on the fabrication, heat treatment and resulting properties of poly(acrylonitrile) (PAN)/magnetic nanofibre mats prepared by needleless electrospinning from polymer solutions. A variety of microscopic and thermal characterisation methods were used to investigate in detail the chemical and morphological transition during oxidative stabilisation (280 °C) and incipient carbonisation (500 °C). PAN and nanoparticles were analysed during all stages of heat treatment. Compared to pure PAN nanofibres, the PAN/ magnetic nanofibers showed larger fiber diameters and the presence of beads and agglomerations. In this study, magnetic nanofibers were investigated in more detail with the aim of detecting undesired agglomerations. Visual observation, for example with CLSM or SEM, does not provide conclusive evidence of agglomerations in the nanofibers. But based on the capabilities of SEM/EDS many different types of samples can be easily analysed where other analytical techniques simply cannot give the fast answer.

References

D. Yadav, F. Amini, A. Ehrmann. 2020. Recent advances in carbon nanofibers and their applications – A review. Eur.Polym. J. 138,109963. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109963.

F. E. C. Othman, N. Yusof, H. Hasbullah, J. Jaafar, A. F. Ismail, N. Abdullah, N. A. H. M. Nordin, F. Aziz, W. N. W. Salleh. 2017. Polyacrylonitrile/magnesium oxide-based activated carbon nanofibers with well-developed microporous structure and their adsorption performance for methane. J. Ind. Eng. Chem. 51, 281-287. DOI: https://doi.org/10.1063/5.0008012.

I. Latsunskyi, A. Vasylenko, R. Viter, M. Kempinski, G. Mowaczyk, S. Jurga, M. Bechelany. 2017. Tailoring of the electronic properties of ZnO-polyacrylonitrile nanofibers, Experiment and theory. Appl. Surf. Sci. 411, 494-501. DOI: https://doi.org/10.1016/j.apsusc.2017.03.111.

H. T. Niu, X. G. Wang, T. Lin. 2012. Upward Needleless Electrospinning of Nanofibers. J. Eng. Fibers Fabr. 7, 17-22. DOI: https://doi.org/10.1177/155892501200702S03.

S. V. Lomos, K. Molnar. 2016. Compressibility of carbon fabrics with needleless electrospun PAN nanofibrous interleaves. Express Polym. Lett. 10, 25-35. DOI: 10.3144/expresspolymlett.2016.

J. N. Zhang, M. Y. Song, D. W. Li, Z. P. Yang, J. H. Cao, Y. Chen, Y. Xu, Q. F. Wei. 2016. Preparation of self-clustering highly oriented nanofibers by needleless electrospinning methods. Fibers Polym. 17, 1414-1420. DOI: https://doi.org/10.1007/s12221-016-6581-x.

T. Grothe, J. Brikmann, H. Meissner, A. Ehrmann. 2017. Influence of solution and spinning parameters on nanofiber mat creation of poly(ethylene oxide) by needleless electrospinning. Mater. Sci. 23, 342-349. DOI: 10.5755/j01.ms.23.4.17169.

H. Fong, I. Chun, D. H. Reneker. 1999. Beaded nanofibers formed during electrospinning. Polymer 40, 4585-4592. DOI: https://doi.org/10.1016/S0032-3861(99)00068-3.

N. Haitao, L. Tong. 2012. Fiber generators in needleless electrospinning. J. Nanomater. 2012, 725950. DOI: https://doi.org/10.1155/2012/725950.

M. Zahmatkeshan, M. Adel, S. Bahrami, F. Esmaeli, S. M. Rezayat, Y. Saeedi, B. Mehravi, S. B. Jameie, K. Ashtari. 2018. Polymer Based Nanofibers: Preparation, Fabrication, and Applications. In: A. Barhoum, M. Bechelany, A. Makhlouf (Eds.) Handbook of Nanofibers. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-42789-8_29-2.

J. Kaur, K. Millington, S. Smith. 2016. Producing high‐quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review. J. Appl. Polym. Sci. 133, 43963. DOI: https://doi.org/10.1002/app.43963.

S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt. 2002. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35, 22, 8456-8466. DOI: https://doi.org/10.1021/ma020444a.

L. Sabantina, M. Klöcker, M. Wortmann, J. Rodríguez Mirasol, T. Cordero, E. Moritzer, K. Finsterbusch, A. Ehrmann. 2020. Stabilization of polyacrylonitrile nanofiber mats obtained by needleless electrospinning using dimethyl sulfoxide as solvent. J. Ind. Text. 50, 2, 224-239. DOI: https://doi.org/10.1177/1528083718825315.

A. Zulfi, D. A. Hapidin, M. M. Munir, F. Iskandar, K. Khairurrijal. 2019. The synthesis of nanofiber membranes from acrylonitrile butadiene styrene (ABS) waste using electrospinning for use as air filtration media. RSC Adv. 9, 30741. DOI: https://doi.org/10.1039/C9RA04877D.

Q. Y. Wu, X. N. Chen, L. S. Wan, Z. K. Xu. 2012. Interactions between polyacrylonitrile and solvents: Density functional theory study and two-dimensional infrared correlation analysis. J. Phys. Chem. B 116, 28, 8321-8330. DOI: https://doi.org/10.1021/jp304167f.

M. Hattori, H. Yamazaki, M. Saito, K. Hisatani, K. Okajima. 1996. NMR study on the dissolved state of polyacrylonitrile in various solvents. Polym. J. 28, 594-600. DOI: https://doi.org/10.1295/polymj.28.594.

A. Khajuria, P. N. Balaguru. Plastic shrinkage characteristics of fiber reinforced cement composites. 1992. In: R. N. Swamy (Ed.), Fibre reinforced Cement and Concrete: Proceedings of the Fourth RILEM International Symposium, 82-90.

M. M. Lovleva, V. N. Smirnova, G. A. Budnitskii. 2001. The solubility of polyacrylonitrile. Fibre Chem. 33, 262-264. DOI: https://doi.org/10.1023/A:1012934313303.

T. Marino, S. Blefari, E. Di Nicolò, A. Figoli. 2017. A more sustainable membrane preparation using triethyl phosphate as solvent. Green Process. Synth. 6, 3, 295-300. DOI: https://doi.org/10.1515/gps-2016-0165.

L. Sabantina, J. R. Mirasol, T. Cordero, K. Finsterbusch, A. Ehrmann. 2018. Investigation of needleless electrospun PAN nanofiber mats. AIP Conf. Proc. 1952, 020085. DOI: https://doi.org/10.1063/1.5032047.

L. Sabantina, M. A. Rodríguez-Cano, M. Klöcker, F. J. García-Mateos, J. J. Ternero-Hidalgo, A. Mamun, F. Beermann, M. Schwakenberg, A.-L. Voigt, J. Rodríguez Mirasol, T. Cordero, A. Ehrmann. 2018. Fixing PAN nanofiber mats during stabilization for carbonization and creating novel metal/carbon composites. Polymers 10, 735. DOI: https://doi.org/10.3390/polym10070735.

S. M. Lemma, A. Esposito, M. Mason, L. Brusetti, S. Cesco, M. Scampicchio. 2015. Removal of bacteria and yeast in water and beer by nylon nanofibrous membranes. J. Food Eng. 157, 1-6. DOI: https://doi.org/10.1016/j.jfoodeng.2015.02.005.

R. Roche, F. Yalcinkaya. 2019. Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. ChemistryOpen 8, 97-103. DOI: https://doi.org/10.1002/open.201800267.

R. Ruiz-Rosas, J. M. Rosas, I. G. Loscertales, J. Rodríguez-Mirasol, T. Cordero. 2014. Electrospinning of silica sub-microtubes mats with platinum nanoparticles for NO catalytic reduction. Appl. Catal. B Environ. 156-157, 15-24. DOI: https://doi.org/10.1016/j.apcatb.2014.02.047.

F. J. García-Mateos, R. Berenguer, M. J. Valero-Romero, J. Rodríguez-Mirasol, T. Cordero. 2018. Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. J. Mater. Chem. A 6, 1219-1233. DOI: https://doi.org/10.1039/C7TA08788H.

N. Ashammakhi, A. Ndreu, Y. Yang, H. Ylikauppila, L. Nikkola. 2012. Nanofiber-based scaffolds for tissue engineering. Eur. J. Plast. Surg. 35, 135-149. DOI: https://doi.org/10.1007/s00238-008-0217-3.

D. Wehlage, H. Blattner, L. Sabantina, R. Böttjer, T. Grothe, A. Rattenholl, F. Gudermann, D. Lütkemeyer, A. Ehrmann. 2019. Sterilization of PAN/gelatine nanofibrous mats for cell growth. Tekstilec 62, 78-88. DOI: https://doi.org/10.14502/Tekstilec2019.62.78-88.

A. Mamun. 2019. Review of possible applications of nanofibrous mats for wound dressings. Tekstilec 62, 89-100. DOI: https://doi.org/10.14502/Tekstilec2019.62.89-100.

E. Cipriani, M. Zanetti, P. Bracco, V. Brunella, M. P. Luda, L. Costa. 2016. Crosslinking and carbonization processes in PAN films and nanofibers. Polym. Degrad. Stab. 123, 178-188. DOI: https://doi.org/10.1016/j.polymdegradstab.2015.11.008.

Z. Z. Zhao, J. Q. Li, X. Y. Yuan, X. Li, Y. Y. Zhang, J. Sheng. 2005. Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 97, 466-474. DOI: https://doi.org/10.1002/app.21762.

T. H. Ko. 1991. The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. Appl. Polym. Sci. 43, 589-600. DOI: https://doi.org/10.1002/app.1991.070430321.

A. Shokuhfar, A. Sedghi, R. E. Farsani. 2013. Effect of thermal characteristics of commercial and special polyacrylonitrile fibres on the fabrication of carbon fibres. Mater. Sci. Technol. 22, 1235-1239. DOI: https://doi.org/10.1179/174328406X129887.

N. Yusof, A. F. Ismail. 2011. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. J. Anal. Appl. Pyrolysis 93, 1-13. DOI: https://doi.org/10.1016/j.jaap.2011.10.001.

J. L. Storck, B. Brockhagen, T. Grothe, L. Sabantina, K. Kaltschmidt, H. Tuvshinbayar, L. Braun, E. Tanzli, A. Hütten, A. Ehrmann. 2021. Stabilization and carbonization of PAN nanofiber mats electrospun on metal substrates. C – Journal of Carbon Research 7, 12. DOI: https://doi.org/10.3390/c7010012.

D. Wehlage, R. Böttjer, T. Grothe, A. Ehrmann. 2018. Electrospinning water-soluble/insoluble polymer blends. AIMS Mater. Sci. 5, 2, 190-200. DOI: https://doi.org/10.3934/matersci.2018.2.190.

J. L. Storck, T. Grothe, K. Tuvshinbayar, E. Diestelhorst, D. Wehlage, B. Brockhagen, M. Wortmann, N. Frese, A. Ehrmann. 2020. Stabilization and incipient carbonization of electrospun polyacrylonitrile nanofibers fixated on aluminum substrates. Fibers 8, 55. DOI: https://doi.org/10.3390/fib8090055.

H. Marsh, F. Rodríguez-Reinoso. 2006. Activated carbon (1st ed.). Elsevier Science, Amsterdam, Netherlands. DOI: https://doi.org/10.1016/B978-0-08-044463-5.X5013-4.

U. Adhikari, X. An, N. Rijal, T. Hopkins, S. Khanal, T. Chavez, R. Tatu, J. Sankar, K. L. Little, D. B. Hom, N. Bhattarai, S. K. Pixley. 2019. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications. Acta Biomater. 98, 215-234. DOI: https://doi.org/10.1016/j.actbio.2019.04.061.

D. Sudsom, A. Ehrmann. 2021. Micromagnetic simulations of Fe and Ni nanodot arrays surrounded by magnetic or non-magnetic matrices. Nanomater. 11, 349. DOI: https://doi.org/10.3390/nano11020349.

T. Blachowicz, A. Ehrmann. 2021. Influence of clustering round magnetic nano-dots on magnetization reversal. J. Phys. Conf. Series 1730, 012034. DOI: https://doi.org/10.1088/1742-6596/1730/1/012034.

P. Wang, T. Dong, M. Li, P. Yang. 2019. Controlling growth of CuO nanoparticles on CuFe2O4 nanotubes and their adsorption kinetics. J. Nanosci. Nanotechnol. 19, 8, 4474–4480. DOI: https://doi.org/10.1166/jnn.2019.16481.

T. Blachowicz, A. Ehrmann. 2020. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 15, 1558925019900843. DOI: https://doi.org/10.1177/1558925019900843.

A. H. Lu, E. L. Salabas, F. Schüth. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222-1244. DOI: https://doi.org/10.1002/anie.200602866.

M. Wortmann, A. S. Layland, N. Frese, U. Kahmann, T. Grothe, J. L. Storck, T. Blachowicz, J. Grzybowski, B. Hüsgen, A. Ehrmann. 2020. On the reliability of highly magnified micrographs for structural analysis in materials science. Sci. Rep. 10, 14708. DOI: https://doi.org/10.1038/s41598-020-71682-8.

C. Döpke, T. Grothe, P. Steblinski, M. Klöcker, L. Sabantina, D. Kosmalska, T. Blachowicz, A. Ehrmann. 2019. Magnetic nanofiber mats for data storage and transfer. Nanomater. 9, 92. DOI: https://doi.org/10.3390/nano9010092.

N. Fokin, T. Grothe, A. Mamun, M. Trabelsi, M. Klöcker, L. Sabantina, C. Döpke, T. Blachowicz, A. Hütten, A. Ehrmann. 2020. Magnetic properties of electrospun magnetic nanofiber mats after stabilization and carbonization. Materials 13, 1552. DOI: https://doi.org/10.3390/ma13071552.

SEM image of carbonized PAN/diiron nickel tetroxide sample

Published

2021-02-26

How to Cite

Trabelsi, M., Mamun, A., Klöcker, M., & Sabantina, L. (2021). Investigation of metallic nanoparticle distribution in PAN/magnetic nanocomposites fabricated with needleless electrospinning technique. Communications in Development and Assembling of Textile Products, 2(1), 8-17. https://doi.org/10.25367/cdatp.2021.2.p8-17

Issue

Section

Peer-reviewed articles