Textile electrodes for bioimpedance measuring


  • Judith Tabea Meding Bielefeld University of Applied Sciences – Working Group Textile Technologies, Bielefeld, Germany
  • Khorolsuren Tuvshinbayar Bielefeld University of Applied Sciences – Working Group Textile Technologies, Bielefeld, Germany
  • Christoph Döpke Bielefeld University of Applied Sciences – Working Group Textile Technologies, Bielefeld, Germany
  • Ferdinand Tamoue KOB GmbH, Wolfstein, Germany




Textile electrodes, bioimpedance measuring, smart textiles, BIA, medical textiles


This article deals with the development and comparison of eight different electrodes made out of a cotton fabric substrate, a silver coated yarn and partly conductive finishes, i.e. a PEDOT:PSS Orgacon ICP 1050 dip-coating and a Powersil coating. The purpose is the application especially in the medical field of angiopathy like for bioimpedance measurements during compression therapies. To be able to compare the suitability of the electrodes, various tests have been performed of the coating abrasion resistance, the stability of electrical resistance values, as well as resistance and bioimpedance measurements. Significant differences between the electrodes regarding their resilience and resistance that are visualized in a value-added analysis were found, with one hand-embroidered, one machine-sewn and one commercial electrode showing optimum properties.


Acar, G.; Ozturk, O.; Golparvar, A.J.; Elboshra, T.A.; Böhringer, K.; Yapici, M.K. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. Electronics 2019, 8, 479. DOI: https://doi.org/10.3390/electronics8050479.

Schwarz-Pfeiffer, A.; Obermann, M.; Weber, M. O.; Ehrmann, A. Smarten up garments through knitting. IOP Conf. Ser. Mater. Sci. Eng. 2016, 141, 012008. DOI: https://doi.org/10.1088/1757-899X/141/1/012008.

Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014, 14, 10895-10928. DOI: https://doi.org/10.3390/s140610895.

Mialich, M. S.; Sicchieri, J. M. F.; Junior, A. A. J. Analysis of body Composition: A critical review of the use of bioelectrical impedance analysis. Int. J. Clin. Nutr. 2014, 2, 1-10. DOI: https://doi.org/10.12691/ijcn-2-1-1.

Hoffer, E. C.; Meador, C. K.; Simpson, D. C. Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 1969, 27, 531-534. DOI: https://doi.org/10.1152/jappl.1969.27.4.531.

Pola, T.; Vanhala, J. Textile electrodes in ECG measurement. Proceedings of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, Melbourne, Australia, 3-6 December 2007; 635-639.

Medrano, G.; Ubl, A.; Zimmermann, N.; Gries, T.; Leonhardt S. Skin electrode impedance of textile electrodes for bioimpedance spectroscopy. IFMBE Proceedings of the 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, Graz, Austria, 29 August-2 September 2007; Scharfetter H., Merwa R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007.

Gaubert, V.; Gidik, H.; Bodart, N.; Koncar, V. Investigating the impact of washing cycles on silver-plated textile electrodes: A complete study. Sensors 2020, 20, 1739. DOI: https://doi.org/10.3390/s20061739.

Ankhili, A.; Zaman, S. U.; Tao, X.; Cochrane, C.; Koncar, V.; Coulon, D. Washable embroidered textile electrodes for long-term electrocardiography monitoring. Text. Leath. Rev. 2019, 2, 126-135. DOI: https://doi.org/10.31881/TLR.2019.27.

Zaman, S. U.; Tao, X.; Cochrane, C.; Koncar, V. Market readiness of smart textile structures – reliability and washability. IOP Conf. Ser. Mater. Sci. Eng. 2018, 459, 012071. DOI: https://doi.org/10.1088/1757-899X/459/1/012071.

Özdil, N.; Kayseri, G. Ö.; Mengüç, G. S. Analysis of abrasion characteristics in textiles. In Abrasion Resistance of Materials; Adamiak, M., Ed.; IntechOpen Limited: London, England, 2012; pp. 119-146, ISBN 978-953-51-0300-4.

Bîrlea, S. I.; Breen, P. P.; Corley, G. J.; Bîrlea, N. M.; Quondamatteo, F.; ÓLaighin, G. Changes in the electrical properties of the electrode-skin-underlying tissue composite during a week-long programme of neuromuscular electrical stimulation. Physiol. Meas. 2014, 35, 231. DOI: https://doi.org/10.1088/0967-3334/35/2/231.

Cho, G.; Jeong, K.; Paik, M. J.; Kwun, Y.; Sung, M. Performance evaluation of textile-based electrodes and motion sensors for smart clothing. IEEE Sens. J. 2011, 11, 3183-3193. DOI: https://doi.org/10.1109/JSEN.2011.2167508.

Zaman, S. U.; Tao, X.; Cochrane, C.; Koncar, V. Understanding the washing damage to textile ECG dry skin electrodes, embroidered and fabric-based; set up of equivalent laboratory tests. Sensors 2020, 20, 1272. DOI: https://doi.org/10.3390/s20051272.

Schäl, P.; Juhász Junger, I.; Grimmelsmann, N; Ehrmann, A. Development of graphite-based conductive textile coatings. J. Coat. Technol. Res. 2018, 15, 875-883. DOI: https://doi.org/10.1007/s11998-017-0024-5.

Myagmarjav, O. 11-анги. Дизайн технологи. Зүү ороох оёдол. Багш Ж.Доржханд. Available online: https://www.youtube.com/watch?v=b-dsEzPfDd8 (accesses on 03.05.2021).

Нийслэлийн ЕБ-ийн лаборатори 14-р сургууль. 6-р анги дизайн технологи. Гоёлын оёдол. Багш Ж.Доржханд. Available online: https://www.youtube.com/watch?v=hiwMtNg7qOw (accessed on 03.05.2021).

Trenz, F. Anwendung dielektrischer Materialcharakterisierung auf die Detektion physiologisch relevanter Dehydrationseffekte (Application of dielectric material characterization on the detection of physiologically relevant dehydration effects). Dissertation thesis, Friedrich-Alexander University Erlangen-Nuremberg, Germany 2019.

Tamoue, F; Ehrmann, A; Blachowicz, T. Predictability of sub-bandage pressure in compression therapy based on material properties. Text. Res. J. 2019, 89, 4410-4424. DOI: https://doi.org/10.1177/0040517519833969.

Bioimpedance measurement with four electrodes.



How to Cite

Meding, J. T., Tuvshinbayar, K. ., Döpke, C., & Tamoue, F. (2021). Textile electrodes for bioimpedance measuring. Communications in Development and Assembling of Textile Products, 2(1), 49-60. https://doi.org/10.25367/cdatp.2021.2.p49-60



Peer-reviewed articles